MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfixlem1 Structured version   Visualization version   GIF version

Theorem gsmsymgrfixlem1 19364
Description: Lemma 1 for gsmsymgrfix 19365. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfixlem1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfixlem1
StepHypRef Expression
1 lencl 14505 . . . . . . . 8 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ ℕ0)
2 elnn0uz 12845 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (ℤ‘0))
31, 2sylib 218 . . . . . . 7 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ (ℤ‘0))
43adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ (ℤ‘0))
543ad2ant1 1133 . . . . 5 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ (ℤ‘0))
6 fzosplitsn 13743 . . . . 5 ((♯‘𝑊) ∈ (ℤ‘0) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
75, 6syl 17 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
87raleqdv 3301 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾))
91adantr 480 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ ℕ0)
1093ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ ℕ0)
11 fveq2 6861 . . . . . . 7 (𝑖 = (♯‘𝑊) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)))
1211fveq1d 6863 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾))
1312eqeq1d 2732 . . . . 5 (𝑖 = (♯‘𝑊) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾))
1413ralunsn 4861 . . . 4 ((♯‘𝑊) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
1510, 14syl 17 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
168, 15bitrd 279 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
17 eqidd 2731 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) = (♯‘𝑊))
18 ccats1val2 14599 . . . . . . . 8 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)) = 𝑃)
1918fveq1d 6863 . . . . . . 7 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = (𝑃𝐾))
2019eqeq1d 2732 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
2117, 20mpd3an3 1464 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
22213ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
23 simprl 770 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑁 ∈ Fin)
24 simpll 766 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑊 ∈ Word 𝐵)
25 simplr 768 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑃𝐵)
26 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
27 gsmsymgrfix.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
2826, 27gsumccatsymgsn 19363 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → (𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩)) = ((𝑆 Σg 𝑊) ∘ 𝑃))
2928fveq1d 6863 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3023, 24, 25, 29syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
31303adant3 1132 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3231adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3326, 27symgbasf 19313 . . . . . . . . . . 11 (𝑃𝐵𝑃:𝑁𝑁)
3433ffnd 6692 . . . . . . . . . 10 (𝑃𝐵𝑃 Fn 𝑁)
3534adantl 481 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑃𝐵) → 𝑃 Fn 𝑁)
36 simpr 484 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
37 fvco2 6961 . . . . . . . . 9 ((𝑃 Fn 𝑁𝐾𝑁) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
3835, 36, 37syl2an 596 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
39383adant3 1132 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
4039adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
41 fveq2 6861 . . . . . . . 8 ((𝑃𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
4241ad2antrl 728 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
43 ccats1val1 14598 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4443ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4544fveq1d 6863 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4645eqeq1d 2732 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4746ralbidva 3155 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4847biimpd 229 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4948adantld 490 . . . . . . . . . 10 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
50493adant3 1132 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
51 simp3 1138 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5250, 51syld 47 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5352imp 406 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)
5442, 53eqtrd 2765 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = 𝐾)
5532, 40, 543eqtrd 2769 . . . . 5 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)
5655exp32 420 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑃𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5722, 56sylbid 240 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5857impcomd 411 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
5916, 58sylbid 240 1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cun 3915  {csn 4592  ccom 5645   Fn wfn 6509  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449  cuz 12800  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567  Basecbs 17186   Σg cgsu 17410  SymGrpcsymg 19306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-symg 19307
This theorem is referenced by:  gsmsymgrfix  19365
  Copyright terms: Public domain W3C validator