MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfixlem1 Structured version   Visualization version   GIF version

Theorem gsmsymgrfixlem1 19469
Description: Lemma 1 for gsmsymgrfix 19470. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfixlem1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfixlem1
StepHypRef Expression
1 lencl 14581 . . . . . . . 8 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ ℕ0)
2 elnn0uz 12948 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (ℤ‘0))
31, 2sylib 218 . . . . . . 7 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ (ℤ‘0))
43adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ (ℤ‘0))
543ad2ant1 1133 . . . . 5 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ (ℤ‘0))
6 fzosplitsn 13825 . . . . 5 ((♯‘𝑊) ∈ (ℤ‘0) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
75, 6syl 17 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
87raleqdv 3334 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾))
91adantr 480 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ ℕ0)
1093ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ ℕ0)
11 fveq2 6920 . . . . . . 7 (𝑖 = (♯‘𝑊) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)))
1211fveq1d 6922 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾))
1312eqeq1d 2742 . . . . 5 (𝑖 = (♯‘𝑊) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾))
1413ralunsn 4918 . . . 4 ((♯‘𝑊) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
1510, 14syl 17 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
168, 15bitrd 279 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
17 eqidd 2741 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) = (♯‘𝑊))
18 ccats1val2 14675 . . . . . . . 8 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)) = 𝑃)
1918fveq1d 6922 . . . . . . 7 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = (𝑃𝐾))
2019eqeq1d 2742 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
2117, 20mpd3an3 1462 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
22213ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
23 simprl 770 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑁 ∈ Fin)
24 simpll 766 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑊 ∈ Word 𝐵)
25 simplr 768 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑃𝐵)
26 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
27 gsmsymgrfix.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
2826, 27gsumccatsymgsn 19468 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → (𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩)) = ((𝑆 Σg 𝑊) ∘ 𝑃))
2928fveq1d 6922 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3023, 24, 25, 29syl3anc 1371 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
31303adant3 1132 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3231adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3326, 27symgbasf 19417 . . . . . . . . . . 11 (𝑃𝐵𝑃:𝑁𝑁)
3433ffnd 6748 . . . . . . . . . 10 (𝑃𝐵𝑃 Fn 𝑁)
3534adantl 481 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑃𝐵) → 𝑃 Fn 𝑁)
36 simpr 484 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
37 fvco2 7019 . . . . . . . . 9 ((𝑃 Fn 𝑁𝐾𝑁) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
3835, 36, 37syl2an 595 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
39383adant3 1132 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
4039adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
41 fveq2 6920 . . . . . . . 8 ((𝑃𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
4241ad2antrl 727 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
43 ccats1val1 14674 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4443ad4ant14 751 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4544fveq1d 6922 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4645eqeq1d 2742 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4746ralbidva 3182 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4847biimpd 229 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4948adantld 490 . . . . . . . . . 10 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
50493adant3 1132 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
51 simp3 1138 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5250, 51syld 47 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5352imp 406 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)
5442, 53eqtrd 2780 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = 𝐾)
5532, 40, 543eqtrd 2784 . . . . 5 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)
5655exp32 420 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑃𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5722, 56sylbid 240 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5857impcomd 411 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
5916, 58sylbid 240 1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cun 3974  {csn 4648  ccom 5704   Fn wfn 6568  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  cuz 12903  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643  Basecbs 17258   Σg cgsu 17500  SymGrpcsymg 19410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-symg 19411
This theorem is referenced by:  gsmsymgrfix  19470
  Copyright terms: Public domain W3C validator