MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfixlem1 Structured version   Visualization version   GIF version

Theorem gsmsymgrfixlem1 18558
Description: Lemma 1 for gsmsymgrfix 18559. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfixlem1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfixlem1
StepHypRef Expression
1 lencl 13886 . . . . . . . 8 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ ℕ0)
2 elnn0uz 12286 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (ℤ‘0))
31, 2sylib 220 . . . . . . 7 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ (ℤ‘0))
43adantr 483 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ (ℤ‘0))
543ad2ant1 1129 . . . . 5 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ (ℤ‘0))
6 fzosplitsn 13148 . . . . 5 ((♯‘𝑊) ∈ (ℤ‘0) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
75, 6syl 17 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
87raleqdv 3418 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾))
91adantr 483 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ ℕ0)
1093ad2ant1 1129 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ ℕ0)
11 fveq2 6673 . . . . . . 7 (𝑖 = (♯‘𝑊) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)))
1211fveq1d 6675 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾))
1312eqeq1d 2826 . . . . 5 (𝑖 = (♯‘𝑊) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾))
1413ralunsn 4827 . . . 4 ((♯‘𝑊) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
1510, 14syl 17 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
168, 15bitrd 281 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
17 eqidd 2825 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) = (♯‘𝑊))
18 ccats1val2 13986 . . . . . . . 8 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)) = 𝑃)
1918fveq1d 6675 . . . . . . 7 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = (𝑃𝐾))
2019eqeq1d 2826 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
2117, 20mpd3an3 1458 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
22213ad2ant1 1129 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
23 simprl 769 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑁 ∈ Fin)
24 simpll 765 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑊 ∈ Word 𝐵)
25 simplr 767 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑃𝐵)
26 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
27 gsmsymgrfix.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
2826, 27gsumccatsymgsn 18557 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → (𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩)) = ((𝑆 Σg 𝑊) ∘ 𝑃))
2928fveq1d 6675 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3023, 24, 25, 29syl3anc 1367 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
31303adant3 1128 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3231adantr 483 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3326, 27symgbasf 18507 . . . . . . . . . . 11 (𝑃𝐵𝑃:𝑁𝑁)
3433ffnd 6518 . . . . . . . . . 10 (𝑃𝐵𝑃 Fn 𝑁)
3534adantl 484 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑃𝐵) → 𝑃 Fn 𝑁)
36 simpr 487 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
37 fvco2 6761 . . . . . . . . 9 ((𝑃 Fn 𝑁𝐾𝑁) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
3835, 36, 37syl2an 597 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
39383adant3 1128 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
4039adantr 483 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
41 fveq2 6673 . . . . . . . 8 ((𝑃𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
4241ad2antrl 726 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
43 ccats1val1 13984 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4443ad4ant14 750 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4544fveq1d 6675 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4645eqeq1d 2826 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4746ralbidva 3199 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4847biimpd 231 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4948adantld 493 . . . . . . . . . 10 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
50493adant3 1128 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
51 simp3 1134 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5250, 51syld 47 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5352imp 409 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)
5442, 53eqtrd 2859 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = 𝐾)
5532, 40, 543eqtrd 2863 . . . . 5 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)
5655exp32 423 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑃𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5722, 56sylbid 242 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5857impcomd 414 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
5916, 58sylbid 242 1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  cun 3937  {csn 4570  ccom 5562   Fn wfn 6353  cfv 6358  (class class class)co 7159  Fincfn 8512  0cc0 10540  1c1 10541   + caddc 10543  0cn0 11900  cuz 12246  ..^cfzo 13036  chash 13693  Word cword 13864   ++ cconcat 13925  ⟨“cs1 13952  Basecbs 16486   Σg cgsu 16717  SymGrpcsymg 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-tset 16587  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-efmnd 18037  df-grp 18109  df-symg 18499
This theorem is referenced by:  gsmsymgrfix  18559
  Copyright terms: Public domain W3C validator