Proof of Theorem gsmsymgrfixlem1
Step | Hyp | Ref
| Expression |
1 | | lencl 14236 |
. . . . . . . 8
⊢ (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈
ℕ0) |
2 | | elnn0uz 12623 |
. . . . . . . 8
⊢
((♯‘𝑊)
∈ ℕ0 ↔ (♯‘𝑊) ∈
(ℤ≥‘0)) |
3 | 1, 2 | sylib 217 |
. . . . . . 7
⊢ (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈
(ℤ≥‘0)) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → (♯‘𝑊) ∈
(ℤ≥‘0)) |
5 | 4 | 3ad2ant1 1132 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈
(ℤ≥‘0)) |
6 | | fzosplitsn 13495 |
. . . . 5
⊢
((♯‘𝑊)
∈ (ℤ≥‘0) → (0..^((♯‘𝑊) + 1)) =
((0..^(♯‘𝑊))
∪ {(♯‘𝑊)})) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (0..^((♯‘𝑊) + 1)) =
((0..^(♯‘𝑊))
∪ {(♯‘𝑊)})) |
8 | 7 | raleqdv 3348 |
. . 3
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) |
9 | 1 | adantr 481 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → (♯‘𝑊) ∈
ℕ0) |
10 | 9 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈
ℕ0) |
11 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑖 = (♯‘𝑊) → ((𝑊 ++ 〈“𝑃”〉)‘𝑖) = ((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))) |
12 | 11 | fveq1d 6776 |
. . . . . 6
⊢ (𝑖 = (♯‘𝑊) → (((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾)) |
13 | 12 | eqeq1d 2740 |
. . . . 5
⊢ (𝑖 = (♯‘𝑊) → ((((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾)) |
14 | 13 | ralunsn 4825 |
. . . 4
⊢
((♯‘𝑊)
∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾))) |
15 | 10, 14 | syl 17 |
. . 3
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾))) |
16 | 8, 15 | bitrd 278 |
. 2
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾))) |
17 | | eqidd 2739 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → (♯‘𝑊) = (♯‘𝑊)) |
18 | | ccats1val2 14334 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊)) = 𝑃) |
19 | 18 | fveq1d 6776 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = (𝑃‘𝐾)) |
20 | 19 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃‘𝐾) = 𝐾)) |
21 | 17, 20 | mpd3an3 1461 |
. . . . 5
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → ((((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃‘𝐾) = 𝐾)) |
22 | 21 | 3ad2ant1 1132 |
. . . 4
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃‘𝐾) = 𝐾)) |
23 | | simprl 768 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → 𝑁 ∈ Fin) |
24 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → 𝑊 ∈ Word 𝐵) |
25 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → 𝑃 ∈ 𝐵) |
26 | | gsmsymgrfix.s |
. . . . . . . . . . 11
⊢ 𝑆 = (SymGrp‘𝑁) |
27 | | gsmsymgrfix.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑆) |
28 | 26, 27 | gsumccatsymgsn 19034 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑆 Σg (𝑊 ++ 〈“𝑃”〉)) = ((𝑆 Σg
𝑊) ∘ 𝑃)) |
29 | 28 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾)) |
30 | 23, 24, 25, 29 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾)) |
31 | 30 | 3adant3 1131 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾)) |
32 | 31 | adantr 481 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾)) |
33 | 26, 27 | symgbasf 18983 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ 𝐵 → 𝑃:𝑁⟶𝑁) |
34 | 33 | ffnd 6601 |
. . . . . . . . . 10
⊢ (𝑃 ∈ 𝐵 → 𝑃 Fn 𝑁) |
35 | 34 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) → 𝑃 Fn 𝑁) |
36 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) |
37 | | fvco2 6865 |
. . . . . . . . 9
⊢ ((𝑃 Fn 𝑁 ∧ 𝐾 ∈ 𝑁) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃‘𝐾))) |
38 | 35, 36, 37 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃‘𝐾))) |
39 | 38 | 3adant3 1131 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃‘𝐾))) |
40 | 39 | adantr 481 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃‘𝐾))) |
41 | | fveq2 6774 |
. . . . . . . 8
⊢ ((𝑃‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘(𝑃‘𝐾)) = ((𝑆 Σg 𝑊)‘𝐾)) |
42 | 41 | ad2antrl 725 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃‘𝐾)) = ((𝑆 Σg 𝑊)‘𝐾)) |
43 | | ccats1val1 14332 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝐵 ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑃”〉)‘𝑖) = (𝑊‘𝑖)) |
44 | 43 | ad4ant14 749 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑃”〉)‘𝑖) = (𝑊‘𝑖)) |
45 | 44 | fveq1d 6776 |
. . . . . . . . . . . . . 14
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = ((𝑊‘𝑖)‘𝐾)) |
46 | 45 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊‘𝑖)‘𝐾) = 𝐾)) |
47 | 46 | ralbidva 3111 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾)) |
48 | 47 | biimpd 228 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾)) |
49 | 48 | adantld 491 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁)) → (((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾)) |
50 | 49 | 3adant3 1131 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾)) |
51 | | simp3 1137 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) |
52 | 50, 51 | syld 47 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) |
53 | 52 | imp 407 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾) |
54 | 42, 53 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃‘𝐾)) = 𝐾) |
55 | 32, 40, 54 | 3eqtrd 2782 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃‘𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾) |
56 | 55 | exp32 421 |
. . . 4
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑃‘𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾))) |
57 | 22, 56 | sylbid 239 |
. . 3
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾))) |
58 | 57 | impcomd 412 |
. 2
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ 〈“𝑃”〉)‘(♯‘𝑊))‘𝐾) = 𝐾) → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾)) |
59 | 16, 58 | sylbid 239 |
1
⊢ (((𝑊 ∈ Word 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ 〈“𝑃”〉)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ 〈“𝑃”〉))‘𝐾) = 𝐾)) |