MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgrfixlem1 Structured version   Visualization version   GIF version

Theorem gsmsymgrfixlem1 19324
Description: Lemma 1 for gsmsymgrfix 19325. (Contributed by AV, 20-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
gsmsymgrfixlem1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐾   𝑖,𝑁   𝑃,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑆(𝑖)

Proof of Theorem gsmsymgrfixlem1
StepHypRef Expression
1 lencl 14458 . . . . . . . 8 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ ℕ0)
2 elnn0uz 12798 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (ℤ‘0))
31, 2sylib 218 . . . . . . 7 (𝑊 ∈ Word 𝐵 → (♯‘𝑊) ∈ (ℤ‘0))
43adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ (ℤ‘0))
543ad2ant1 1133 . . . . 5 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ (ℤ‘0))
6 fzosplitsn 13696 . . . . 5 ((♯‘𝑊) ∈ (ℤ‘0) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
75, 6syl 17 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (0..^((♯‘𝑊) + 1)) = ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)}))
87raleqdv 3290 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾))
91adantr 480 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) ∈ ℕ0)
1093ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (♯‘𝑊) ∈ ℕ0)
11 fveq2 6826 . . . . . . 7 (𝑖 = (♯‘𝑊) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)))
1211fveq1d 6828 . . . . . 6 (𝑖 = (♯‘𝑊) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾))
1312eqeq1d 2731 . . . . 5 (𝑖 = (♯‘𝑊) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾))
1413ralunsn 4848 . . . 4 ((♯‘𝑊) ∈ ℕ0 → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
1510, 14syl 17 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ ((0..^(♯‘𝑊)) ∪ {(♯‘𝑊)})(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
168, 15bitrd 279 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾)))
17 eqidd 2730 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵) → (♯‘𝑊) = (♯‘𝑊))
18 ccats1val2 14552 . . . . . . . 8 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊)) = 𝑃)
1918fveq1d 6828 . . . . . . 7 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = (𝑃𝐾))
2019eqeq1d 2731 . . . . . 6 ((𝑊 ∈ Word 𝐵𝑃𝐵 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
2117, 20mpd3an3 1464 . . . . 5 ((𝑊 ∈ Word 𝐵𝑃𝐵) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
22213ad2ant1 1133 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 ↔ (𝑃𝐾) = 𝐾))
23 simprl 770 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑁 ∈ Fin)
24 simpll 766 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑊 ∈ Word 𝐵)
25 simplr 768 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → 𝑃𝐵)
26 gsmsymgrfix.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝑁)
27 gsmsymgrfix.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
2826, 27gsumccatsymgsn 19323 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → (𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩)) = ((𝑆 Σg 𝑊) ∘ 𝑃))
2928fveq1d 6828 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝐵𝑃𝐵) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3023, 24, 25, 29syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
31303adant3 1132 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3231adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾))
3326, 27symgbasf 19273 . . . . . . . . . . 11 (𝑃𝐵𝑃:𝑁𝑁)
3433ffnd 6657 . . . . . . . . . 10 (𝑃𝐵𝑃 Fn 𝑁)
3534adantl 481 . . . . . . . . 9 ((𝑊 ∈ Word 𝐵𝑃𝐵) → 𝑃 Fn 𝑁)
36 simpr 484 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
37 fvco2 6924 . . . . . . . . 9 ((𝑃 Fn 𝑁𝐾𝑁) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
3835, 36, 37syl2an 596 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
39383adant3 1132 . . . . . . 7 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
4039adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → (((𝑆 Σg 𝑊) ∘ 𝑃)‘𝐾) = ((𝑆 Σg 𝑊)‘(𝑃𝐾)))
41 fveq2 6826 . . . . . . . 8 ((𝑃𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
4241ad2antrl 728 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = ((𝑆 Σg 𝑊)‘𝐾))
43 ccats1val1 14551 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝐵𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4443ad4ant14 752 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑃”⟩)‘𝑖) = (𝑊𝑖))
4544fveq1d 6828 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = ((𝑊𝑖)‘𝐾))
4645eqeq1d 2731 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ((𝑊𝑖)‘𝐾) = 𝐾))
4746ralbidva 3150 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4847biimpd 229 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
4948adantld 490 . . . . . . . . . 10 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
50493adant3 1132 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾))
51 simp3 1138 . . . . . . . . 9 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5250, 51syld 47 . . . . . . . 8 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾))
5352imp 406 . . . . . . 7 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)
5442, 53eqtrd 2764 . . . . . 6 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg 𝑊)‘(𝑃𝐾)) = 𝐾)
5532, 40, 543eqtrd 2768 . . . . 5 ((((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) ∧ ((𝑃𝐾) = 𝐾 ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾)) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)
5655exp32 420 . . . 4 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((𝑃𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5722, 56sylbid 240 . . 3 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾 → (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾)))
5857impcomd 411 . 2 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → ((∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 ∧ (((𝑊 ++ ⟨“𝑃”⟩)‘(♯‘𝑊))‘𝐾) = 𝐾) → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
5916, 58sylbid 240 1 (((𝑊 ∈ Word 𝐵𝑃𝐵) ∧ (𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ (∀𝑖 ∈ (0..^(♯‘𝑊))((𝑊𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg 𝑊)‘𝐾) = 𝐾)) → (∀𝑖 ∈ (0..^((♯‘𝑊) + 1))(((𝑊 ++ ⟨“𝑃”⟩)‘𝑖)‘𝐾) = 𝐾 → ((𝑆 Σg (𝑊 ++ ⟨“𝑃”⟩))‘𝐾) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3903  {csn 4579  ccom 5627   Fn wfn 6481  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  1c1 11029   + caddc 11031  0cn0 12402  cuz 12753  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495  ⟨“cs1 14520  Basecbs 17138   Σg cgsu 17362  SymGrpcsymg 19266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-efmnd 18761  df-grp 18833  df-symg 19267
This theorem is referenced by:  gsmsymgrfix  19325
  Copyright terms: Public domain W3C validator