| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcoss2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| eldmcoss2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmcoss 38422 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | |
| 2 | brcoss 38395 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴))) | |
| 3 | 2 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴))) |
| 4 | pm4.24 563 | . . . 4 ⊢ (𝑢𝑅𝐴 ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴)) | |
| 5 | 4 | exbii 1848 | . . 3 ⊢ (∃𝑢 𝑢𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴)) |
| 6 | 3, 5 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢 𝑢𝑅𝐴)) |
| 7 | 1, 6 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 class class class wbr 5119 dom cdm 5654 ≀ ccoss 38145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-coss 38375 |
| This theorem is referenced by: refrelcosslem 38426 |
| Copyright terms: Public domain | W3C validator |