Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmcoss2 Structured version   Visualization version   GIF version

Theorem eldmcoss2 37987
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.)
Assertion
Ref Expression
eldmcoss2 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))

Proof of Theorem eldmcoss2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eldmcoss 37986 . 2 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
2 brcoss 37959 . . . 4 ((𝐴𝑉𝐴𝑉) → (𝐴𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴)))
32anidms 565 . . 3 (𝐴𝑉 → (𝐴𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴)))
4 pm4.24 562 . . . 4 (𝑢𝑅𝐴 ↔ (𝑢𝑅𝐴𝑢𝑅𝐴))
54exbii 1842 . . 3 (∃𝑢 𝑢𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴))
63, 5bitr4di 288 . 2 (𝐴𝑉 → (𝐴𝑅𝐴 ↔ ∃𝑢 𝑢𝑅𝐴))
71, 6bitr4d 281 1 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wcel 2098   class class class wbr 5143  dom cdm 5672  ccoss 37705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-coss 37939
This theorem is referenced by:  refrelcosslem  37990
  Copyright terms: Public domain W3C validator