| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcoss2 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
| Ref | Expression |
|---|---|
| eldmcoss2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmcoss 38474 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | |
| 2 | brcoss 38447 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴))) | |
| 3 | 2 | anidms 566 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴))) |
| 4 | pm4.24 563 | . . . 4 ⊢ (𝑢𝑅𝐴 ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴)) | |
| 5 | 4 | exbii 1849 | . . 3 ⊢ (∃𝑢 𝑢𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴)) |
| 6 | 3, 5 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢 𝑢𝑅𝐴)) |
| 7 | 1, 6 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2110 class class class wbr 5089 dom cdm 5614 ≀ ccoss 38194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-coss 38427 |
| This theorem is referenced by: refrelcosslem 38478 |
| Copyright terms: Public domain | W3C validator |