Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmcoss2 Structured version   Visualization version   GIF version

Theorem eldmcoss2 38567
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.)
Assertion
Ref Expression
eldmcoss2 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))

Proof of Theorem eldmcoss2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eldmcoss 38566 . 2 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
2 brcoss 38539 . . . 4 ((𝐴𝑉𝐴𝑉) → (𝐴𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴)))
32anidms 566 . . 3 (𝐴𝑉 → (𝐴𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴)))
4 pm4.24 563 . . . 4 (𝑢𝑅𝐴 ↔ (𝑢𝑅𝐴𝑢𝑅𝐴))
54exbii 1849 . . 3 (∃𝑢 𝑢𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴))
63, 5bitr4di 289 . 2 (𝐴𝑉 → (𝐴𝑅𝐴 ↔ ∃𝑢 𝑢𝑅𝐴))
71, 6bitr4d 282 1 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111   class class class wbr 5093  dom cdm 5619  ccoss 38228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-coss 38519
This theorem is referenced by:  refrelcosslem  38570
  Copyright terms: Public domain W3C validator