Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmcoss2 Structured version   Visualization version   GIF version

Theorem eldmcoss2 36577
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.)
Assertion
Ref Expression
eldmcoss2 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))

Proof of Theorem eldmcoss2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eldmcoss 36576 . 2 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
2 brcoss 36554 . . . 4 ((𝐴𝑉𝐴𝑉) → (𝐴𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴)))
32anidms 567 . . 3 (𝐴𝑉 → (𝐴𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴)))
4 pm4.24 564 . . . 4 (𝑢𝑅𝐴 ↔ (𝑢𝑅𝐴𝑢𝑅𝐴))
54exbii 1850 . . 3 (∃𝑢 𝑢𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐴))
63, 5bitr4di 289 . 2 (𝐴𝑉 → (𝐴𝑅𝐴 ↔ ∃𝑢 𝑢𝑅𝐴))
71, 6bitr4d 281 1 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  wcel 2106   class class class wbr 5074  dom cdm 5589  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-coss 36537
This theorem is referenced by:  refrelcosslem  36580
  Copyright terms: Public domain W3C validator