![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcoss2 | Structured version Visualization version GIF version |
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 28-Dec-2018.) |
Ref | Expression |
---|---|
eldmcoss2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmcoss 37328 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | |
2 | brcoss 37301 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴))) | |
3 | 2 | anidms 568 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴))) |
4 | pm4.24 565 | . . . 4 ⊢ (𝑢𝑅𝐴 ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴)) | |
5 | 4 | exbii 1851 | . . 3 ⊢ (∃𝑢 𝑢𝑅𝐴 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐴)) |
6 | 3, 5 | bitr4di 289 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≀ 𝑅𝐴 ↔ ∃𝑢 𝑢𝑅𝐴)) |
7 | 1, 6 | bitr4d 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 class class class wbr 5149 dom cdm 5677 ≀ ccoss 37043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-coss 37281 |
This theorem is referenced by: refrelcosslem 37332 |
Copyright terms: Public domain | W3C validator |