| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnvfld | Structured version Visualization version GIF version | ||
| Description: if 𝑅 is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009.) |
| Ref | Expression |
|---|---|
| relcnvfld | ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfld 6264 | . 2 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = (dom 𝑅 ∪ ran 𝑅)) | |
| 2 | unidmrn 6268 | . 2 ⊢ ∪ ∪ ◡𝑅 = (dom 𝑅 ∪ ran 𝑅) | |
| 3 | 1, 2 | eqtr4di 2788 | 1 ⊢ (Rel 𝑅 → ∪ ∪ 𝑅 = ∪ ∪ ◡𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3924 ∪ cuni 4883 ◡ccnv 5653 dom cdm 5654 ran crn 5655 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: cnvps 18588 tsrdir 18614 |
| Copyright terms: Public domain | W3C validator |