| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidmrn | Structured version Visualization version GIF version | ||
| Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
| Ref | Expression |
|---|---|
| unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6052 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | relfld 6222 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
| 4 | 3 | equncomi 4107 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 5 | dfdm4 5834 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | df-rn 5625 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 5, 6 | uneq12i 4113 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 8 | 4, 7 | eqtr4i 2757 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 ∪ cuni 4856 ◡ccnv 5613 dom cdm 5614 ran crn 5615 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: relcnvfld 6227 dfdm2 6228 |
| Copyright terms: Public domain | W3C validator |