MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidmrn Structured version   Visualization version   GIF version

Theorem unidmrn 6240
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn 𝐴 = (dom 𝐴 ∪ ran 𝐴)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 6064 . . . 4 Rel 𝐴
2 relfld 6236 . . . 4 (Rel 𝐴 𝐴 = (dom 𝐴 ∪ ran 𝐴))
31, 2ax-mp 5 . . 3 𝐴 = (dom 𝐴 ∪ ran 𝐴)
43equncomi 4119 . 2 𝐴 = (ran 𝐴 ∪ dom 𝐴)
5 dfdm4 5849 . . 3 dom 𝐴 = ran 𝐴
6 df-rn 5642 . . 3 ran 𝐴 = dom 𝐴
75, 6uneq12i 4125 . 2 (dom 𝐴 ∪ ran 𝐴) = (ran 𝐴 ∪ dom 𝐴)
84, 7eqtr4i 2755 1 𝐴 = (dom 𝐴 ∪ ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3909   cuni 4867  ccnv 5630  dom cdm 5631  ran crn 5632  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  relcnvfld  6241  dfdm2  6242
  Copyright terms: Public domain W3C validator