Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unidmrn | Structured version Visualization version GIF version |
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
Ref | Expression |
---|---|
unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6030 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | relfld 6201 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
4 | 3 | equncomi 4100 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
5 | dfdm4 5825 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | df-rn 5619 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 5, 6 | uneq12i 4106 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
8 | 4, 7 | eqtr4i 2768 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3895 ∪ cuni 4850 ◡ccnv 5607 dom cdm 5608 ran crn 5609 Rel wrel 5613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-xp 5614 df-rel 5615 df-cnv 5616 df-dm 5618 df-rn 5619 |
This theorem is referenced by: relcnvfld 6206 dfdm2 6207 |
Copyright terms: Public domain | W3C validator |