MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidmrn Structured version   Visualization version   GIF version

Theorem unidmrn 6205
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.)
Assertion
Ref Expression
unidmrn 𝐴 = (dom 𝐴 ∪ ran 𝐴)

Proof of Theorem unidmrn
StepHypRef Expression
1 relcnv 6030 . . . 4 Rel 𝐴
2 relfld 6201 . . . 4 (Rel 𝐴 𝐴 = (dom 𝐴 ∪ ran 𝐴))
31, 2ax-mp 5 . . 3 𝐴 = (dom 𝐴 ∪ ran 𝐴)
43equncomi 4100 . 2 𝐴 = (ran 𝐴 ∪ dom 𝐴)
5 dfdm4 5825 . . 3 dom 𝐴 = ran 𝐴
6 df-rn 5619 . . 3 ran 𝐴 = dom 𝐴
75, 6uneq12i 4106 . 2 (dom 𝐴 ∪ ran 𝐴) = (ran 𝐴 ∪ dom 𝐴)
84, 7eqtr4i 2768 1 𝐴 = (dom 𝐴 ∪ ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3895   cuni 4850  ccnv 5607  dom cdm 5608  ran crn 5609  Rel wrel 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-xp 5614  df-rel 5615  df-cnv 5616  df-dm 5618  df-rn 5619
This theorem is referenced by:  relcnvfld  6206  dfdm2  6207
  Copyright terms: Public domain W3C validator