![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidmrn | Structured version Visualization version GIF version |
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
Ref | Expression |
---|---|
unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6096 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | relfld 6267 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
4 | 3 | equncomi 4150 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
5 | dfdm4 5888 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | df-rn 5680 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 5, 6 | uneq12i 4156 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
8 | 4, 7 | eqtr4i 2757 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∪ cun 3941 ∪ cuni 4902 ◡ccnv 5668 dom cdm 5669 ran crn 5670 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 |
This theorem is referenced by: relcnvfld 6272 dfdm2 6273 |
Copyright terms: Public domain | W3C validator |