| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidmrn | Structured version Visualization version GIF version | ||
| Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
| Ref | Expression |
|---|---|
| unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6121 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | relfld 6294 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
| 4 | 3 | equncomi 4159 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 5 | dfdm4 5905 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | df-rn 5695 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 5, 6 | uneq12i 4165 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 8 | 4, 7 | eqtr4i 2767 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3948 ∪ cuni 4906 ◡ccnv 5683 dom cdm 5684 ran crn 5685 Rel wrel 5689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 |
| This theorem is referenced by: relcnvfld 6299 dfdm2 6300 |
| Copyright terms: Public domain | W3C validator |