![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidmrn | Structured version Visualization version GIF version |
Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
Ref | Expression |
---|---|
unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6125 | . . . 4 ⊢ Rel ◡𝐴 | |
2 | relfld 6297 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
4 | 3 | equncomi 4170 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
5 | dfdm4 5909 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | df-rn 5700 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | 5, 6 | uneq12i 4176 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
8 | 4, 7 | eqtr4i 2766 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∪ cuni 4912 ◡ccnv 5688 dom cdm 5689 ran crn 5690 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: relcnvfld 6302 dfdm2 6303 |
Copyright terms: Public domain | W3C validator |