| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidmrn | Structured version Visualization version GIF version | ||
| Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008.) |
| Ref | Expression |
|---|---|
| unidmrn | ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6075 | . . . 4 ⊢ Rel ◡𝐴 | |
| 2 | relfld 6248 | . . . 4 ⊢ (Rel ◡𝐴 → ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ ∪ ◡𝐴 = (dom ◡𝐴 ∪ ran ◡𝐴) |
| 4 | 3 | equncomi 4123 | . 2 ⊢ ∪ ∪ ◡𝐴 = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 5 | dfdm4 5859 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | df-rn 5649 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | 5, 6 | uneq12i 4129 | . 2 ⊢ (dom 𝐴 ∪ ran 𝐴) = (ran ◡𝐴 ∪ dom ◡𝐴) |
| 8 | 4, 7 | eqtr4i 2755 | 1 ⊢ ∪ ∪ ◡𝐴 = (dom 𝐴 ∪ ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 ∪ cuni 4871 ◡ccnv 5637 dom cdm 5638 ran crn 5639 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: relcnvfld 6253 dfdm2 6254 |
| Copyright terms: Public domain | W3C validator |