| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > residm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.) |
| Ref | Expression |
|---|---|
| residm | ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | resabs2 5983 | . 2 ⊢ (𝐵 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-rel 5648 df-res 5653 |
| This theorem is referenced by: resima 5989 dffv2 6959 fvsnun2 7160 qtopres 23592 bnj1253 35014 eldioph2lem1 42755 eldioph2lem2 42756 relexpiidm 43700 |
| Copyright terms: Public domain | W3C validator |