Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  residm Structured version   Visualization version   GIF version

Theorem residm 5869
 Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
residm ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)

Proof of Theorem residm
StepHypRef Expression
1 ssid 3973 . 2 𝐵𝐵
2 resabs2 5868 . 2 (𝐵𝐵 → ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ⊆ wss 3918   ↾ cres 5540 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pr 5313 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-rab 3141  df-v 3481  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-opab 5112  df-xp 5544  df-rel 5545  df-res 5550 This theorem is referenced by:  resima  5870  dffv2  6739  fvsnun2  6928  qtopres  22294  bnj1253  32309  eldioph2lem1  39548  eldioph2lem2  39549  relexpiidm  40252
 Copyright terms: Public domain W3C validator