MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  residm Structured version   Visualization version   GIF version

Theorem residm 5958
Description: Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
residm ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)

Proof of Theorem residm
StepHypRef Expression
1 ssid 3952 . 2 𝐵𝐵
2 resabs2 5957 . 2 (𝐵𝐵 → ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3897  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-xp 5620  df-rel 5621  df-res 5626
This theorem is referenced by:  resima  5963  dffv2  6917  fvsnun2  7117  qtopres  23613  bnj1253  35029  eldioph2lem1  42801  eldioph2lem2  42802  relexpiidm  43745
  Copyright terms: Public domain W3C validator