Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem104 Structured version   Visualization version   GIF version

Theorem fourierdlem104 42502
Description: The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem104.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem104.xre (𝜑𝑋 ∈ ℝ)
fourierdlem104.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem104.m (𝜑𝑀 ∈ ℕ)
fourierdlem104.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem104.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem104.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem104.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem104.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem104.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem104.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem104.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem104.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem104.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem104.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem104.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem104.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem104.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem104.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
fourierdlem104.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem104.o 𝑂 = (𝑈 ↾ (𝑑[,]π))
fourierdlem104.t 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
fourierdlem104.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem104.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem104.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem104.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem104.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem104 (𝜑𝑍 ⇝ (𝑌 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠   𝑄,𝑓   𝑄,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑊,𝑠   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑖,𝑌,𝑘,𝑙,𝑠,𝑡   𝑚,𝑌,𝑛,𝑖   𝑤,𝑌,𝑧   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑒,𝑓,𝑝,𝑑)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem104
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12016 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1915 . . . . 5 𝑛𝜑
4 nfmpt1 5166 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
5 nfmpt1 5166 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem104.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5166 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2977 . . . . 5 𝑛𝐸
9 nnuz 12284 . . . . 5 ℕ = (ℤ‘1)
10 elioore 12771 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (0(,)π) → 𝑑 ∈ ℝ)
1110adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ ℝ)
12 pire 25046 . . . . . . . . . . . . . . . 16 π ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ ℝ)
14 fourierdlem104.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
15 fourierdlem104.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
16 ioossre 12801 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1814, 17fssresd 6547 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
19 ioosscn 41776 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
21 eqid 2823 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 pnfxr 10697 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2415ltpnfd 12519 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2521, 23, 15, 24lptioo1cn 41934 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
26 fourierdlem104.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2718, 20, 25, 26limcrecl 41917 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
28 ioossre 12801 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3014, 29fssresd 6547 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
31 ioosscn 41776 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
33 mnfxr 10700 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3515mnfltd 12522 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3621, 34, 15, 35lptioo2cn 41933 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
37 fourierdlem104.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3830, 32, 36, 37limcrecl 41917 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
39 fourierdlem104.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
40 fourierdlem104.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
41 fourierdlem104.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4214, 15, 27, 38, 39, 40, 41fourierdlem55 42453 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
43 ax-resscn 10596 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4542, 44fssd 6530 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4645adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℂ)
4712renegcli 10949 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4847a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ∈ ℝ)
4947a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π ∈ ℝ)
50 0red 10646 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 ∈ ℝ)
51 negpilt0 41553 . . . . . . . . . . . . . . . . . . . . . 22 -π < 0
5251a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → -π < 0)
53 0xr 10690 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
5412rexri 10701 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ ℝ*
55 ioogtlb 41777 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 0 < 𝑑)
5653, 54, 55mp3an12 1447 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 < 𝑑)
5749, 50, 10, 52, 56lttrd 10803 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π < 𝑑)
5849, 10, 57ltled 10790 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → -π ≤ 𝑑)
5958adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ≤ 𝑑)
6013leidd 11208 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → π ≤ π)
61 iccss 12807 . . . . . . . . . . . . . . . . . 18 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 𝑑 ∧ π ≤ π)) → (𝑑[,]π) ⊆ (-π[,]π))
6248, 13, 59, 60, 61syl22anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ (-π[,]π))
6346, 62fssresd 6547 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ)
64 fourierdlem104.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (𝑑[,]π))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑈 ↾ (𝑑[,]π)))
6665feq1d 6501 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑂:(𝑑[,]π)⟶ℂ ↔ (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ))
6763, 66mpbird 259 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂:(𝑑[,]π)⟶ℂ)
68 fourierdlem104.n . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘𝑇) − 1)
6912elexi 3515 . . . . . . . . . . . . . . . . . . . . . . . . 25 π ∈ V
7069prid2 4701 . . . . . . . . . . . . . . . . . . . . . . . 24 π ∈ {𝑑, π}
71 elun1 4154 . . . . . . . . . . . . . . . . . . . . . . . 24 (π ∈ {𝑑, π} → π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
73 fourierdlem104.t . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
7472, 73eleqtrri 2914 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ 𝑇
7574ne0ii 4305 . . . . . . . . . . . . . . . . . . . . 21 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ≠ ∅)
77 prfi 8795 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑑, π} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑑, π} ∈ Fin)
79 fzfi 13343 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0...𝑀) ∈ Fin
80 fourierdlem104.q . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 41434 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ran 𝑄 ∈ Fin
83 infi 8744 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
8482, 83mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
85 unfi 8787 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑑, π} ∈ Fin ∧ (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8678, 84, 85syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8773, 86eqeltrid 2919 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ Fin)
88 hashnncl 13730 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9076, 89mpbird 259 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝑇) ∈ ℕ)
91 nnm1nn0 11941 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9368, 92eqeltrid 2919 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
9493adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
95 0red 10646 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 ∈ ℝ)
96 1red 10644 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ∈ ℝ)
9794nn0red 11959 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
98 0lt1 11164 . . . . . . . . . . . . . . . . . . 19 0 < 1
9998a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 1)
100 2re 11714 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ∈ ℝ)
10290nnred 11655 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝑇) ∈ ℝ)
103102adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘𝑇) ∈ ℝ)
104 iooltub 41793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 𝑑 < π)
10553, 54, 104mp3an12 1447 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (0(,)π) → 𝑑 < π)
10610, 105ltned 10778 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → 𝑑 ≠ π)
107106adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≠ π)
108 hashprg 13759 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
10911, 12, 108sylancl 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
110107, 109mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) = 2)
111110eqcomd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 2 = (♯‘{𝑑, π}))
11287adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ∈ Fin)
113 ssun1 4150 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑑, π} ⊆ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
114113, 73sseqtrri 4006 . . . . . . . . . . . . . . . . . . . . . 22 {𝑑, π} ⊆ 𝑇
115 hashssle 41572 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ∈ Fin ∧ {𝑑, π} ⊆ 𝑇) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
116112, 114, 115sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
117111, 116eqbrtrd 5090 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ≤ (♯‘𝑇))
118101, 103, 96, 117lesub1dd 11258 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
119 1e2m1 11767 . . . . . . . . . . . . . . . . . . 19 1 = (2 − 1)
120118, 119, 683brtr4g 5102 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ≤ 𝑁)
12195, 96, 97, 99, 120ltletrd 10802 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 𝑁)
122121gt0ne0d 11206 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ≠ 0)
123 elnnne0 11914 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
12494, 122, 123sylanbrc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ)
125 fourierdlem104.j . . . . . . . . . . . . . . . . 17 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12611leidd 11208 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑑)
12712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → π ∈ ℝ)
12810, 127, 105ltled 10790 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → 𝑑 ≤ π)
129128adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≤ π)
13011, 13, 11, 126, 129eliccd 41786 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ (𝑑[,]π))
13111, 13, 13, 129, 60eliccd 41786 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ (𝑑[,]π))
132130, 131jca 514 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)))
133 vex 3499 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
134133, 69prss 4755 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)) ↔ {𝑑, π} ⊆ (𝑑[,]π))
135132, 134sylib 220 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ (𝑑[,]π))
136 inss2 4208 . . . . . . . . . . . . . . . . . . . . 21 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π)
137136a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π))
138 ioossicc 12825 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)π) ⊆ (𝑑[,]π)
139137, 138sstrdi 3981 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑[,]π))
140135, 139unssd 4164 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ (𝑑[,]π))
14173, 140eqsstrid 4017 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ (𝑑[,]π))
142133prid1 4700 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ {𝑑, π}
143 elun1 4154 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑑, π} → 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
144142, 143ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
145144, 73eleqtrri 2914 . . . . . . . . . . . . . . . . . 18 𝑑𝑇
146145a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑇)
14774a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ 𝑇)
148112, 68, 125, 11, 13, 141, 146, 147fourierdlem52 42450 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ((𝐽:(0...𝑁)⟶(𝑑[,]π) ∧ (𝐽‘0) = 𝑑) ∧ (𝐽𝑁) = π))
149148simplld 766 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
150148simplrd 768 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽‘0) = 𝑑)
151148simprd 498 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽𝑁) = π)
152 elfzoelz 13041 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
153152zred 12090 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
154153adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
155154ltp1d 11572 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15610, 127jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → (𝑑 ∈ ℝ ∧ π ∈ ℝ))
157133, 69prss 4755 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) ↔ {𝑑, π} ⊆ ℝ)
158156, 157sylib 220 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → {𝑑, π} ⊆ ℝ)
159158adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ ℝ)
160 ioossre 12801 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑(,)π) ⊆ ℝ
161136, 160sstri 3978 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ)
163159, 162unssd 4164 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ ℝ)
16473, 163eqsstrid 4017 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ ℝ)
165112, 164, 125, 68fourierdlem36 42435 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
166165adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
167 elfzofz 13056 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
168167adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
169 fzofzp1 13137 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
170169adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
171 isorel 7081 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
172166, 168, 170, 171syl12anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
173155, 172mpbid 234 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17442adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
175174, 62feqresmpt 6736 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)) = (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)))
17662sselda 3969 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
17714, 15, 27, 38, 39fourierdlem9 42408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
178177ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐻:(-π[,]π)⟶ℝ)
179178, 176ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) ∈ ℝ)
18040fourierdlem43 42442 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
181180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 176ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) ∈ ℝ)
183179, 182remulcld 10673 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18441fvmpt2 6781 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
185176, 183, 184syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
186 0red 10646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 ∈ ℝ)
18710adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ)
18812a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ)
189 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (𝑑[,]π))
190 eliccre 41788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
191187, 188, 189, 190syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
19256adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑑)
193187rexrd 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ*)
19454a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ*)
195 iccgelb 12796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
196193, 194, 189, 195syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
197186, 187, 191, 192, 196ltletrd 10802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
198197gt0ne0d 11206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
199198adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
200199neneqd 3023 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
201200iffalsed 4480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
202197adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
203202iftrued 4477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
204203oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
205204oveq1d 7173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
206201, 205eqtrd 2858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
20714ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐹:ℝ⟶ℝ)
20815ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑋 ∈ ℝ)
209 iccssre 12821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21047, 12, 209mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
211210, 176sseldi 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
212208, 211readdcld 10672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
213207, 212ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21427ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑌 ∈ ℝ)
215213, 214resubcld 11070 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℝ)
216215, 211, 199redivcld 11470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ ℝ)
217206, 216eqeltrd 2915 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
21839fvmpt2 6781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
219176, 217, 218syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
220219, 201, 2053eqtrd 2862 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
221188renegcld 11069 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ∈ ℝ)
22251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 0)
223221, 186, 191, 222, 197lttrd 10803 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 𝑠)
224221, 191, 223ltled 10790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ≤ 𝑠)
225 iccleub 12795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
226193, 194, 189, 225syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
227221, 188, 191, 224, 226eliccd 41786 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
228198neneqd 3023 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
229228iffalsed 4480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
230100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℝ)
231191rehalfcld 11887 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℝ)
232231resincld 15498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℝ)
233230, 232remulcld 10673 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
234 2cnd 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
235191recnd 10671 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
236235halfcld 11885 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
237236sincld 15485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
238 2ne0 11744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ≠ 0)
240 fourierdlem44 42443 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
241227, 198, 240syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ≠ 0)
242234, 237, 239, 241mulne0d 11294 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
243191, 233, 242redivcld 11470 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
244229, 243eqeltrd 2915 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
24540fvmpt2 6781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
246227, 244, 245syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
247246adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
248220, 247oveq12d 7176 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
249200iffalsed 4480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
250249oveq2d 7174 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
251185, 248, 2503eqtrd 2862 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252251mpteq2dva 5163 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25365, 175, 2523eqtrd 2862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
254253adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255254reseq1d 5854 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
25614adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
25715adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
258 fourierdlem104.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
259 fourierdlem104.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
260259adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑀 ∈ ℕ)
261 fourierdlem104.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
262261adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑉 ∈ (𝑃𝑀))
263 fourierdlem104.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
264263adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
265 fourierdlem104.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
266265adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
267 fourierdlem104.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
268267adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
269105adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 < π)
27050, 10ltnled 10789 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → (0 < 𝑑 ↔ ¬ 𝑑 ≤ 0))
27156, 270mpbid 234 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → ¬ 𝑑 ≤ 0)
272271intn3an2d 1476 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → ¬ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π))
273 elicc2 12804 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
27410, 12, 273sylancl 588 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
275272, 274mtbird 327 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → ¬ 0 ∈ (𝑑[,]π))
276275adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ¬ 0 ∈ (𝑑[,]π))
27727adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑌 ∈ ℝ)
278 eqid 2823 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
279 eqid 2823 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
280 eqid 2823 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
281 fveq2 6672 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
282 oveq1 7165 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
283282fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
284281, 283oveq12d 7176 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
285284sseq2d 4001 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
286285cbvriotavw 7126 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
287256, 257, 258, 260, 262, 264, 266, 268, 11, 13, 269, 62, 276, 277, 278, 80, 73, 68, 125, 279, 280, 286fourierdlem86 42484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
288287simprd 498 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
289255, 288eqeltrd 2915 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
290287simplld 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
291254eqcomd 2829 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
292291reseq1d 5854 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
293292oveq1d 7173 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
294290, 293eleqtrd 2917 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295287simplrd 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
296292oveq1d 7173 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
297295, 296eleqtrd 2917 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
298 eqid 2823 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
29967adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(𝑑[,]π)⟶ℂ)
30011ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
30112a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → π ∈ ℝ)
302 elioore 12771 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
303302adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30462, 210sstrdi 3981 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ ℝ)
305304adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ ℝ)
306149adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
307306, 168ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (𝑑[,]π))
308305, 307sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
309308adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31011adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
311310rexrd 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
31254a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ*)
313 iccgelb 12796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽𝑘) ∈ (𝑑[,]π)) → 𝑑 ≤ (𝐽𝑘))
314311, 312, 307, 313syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ≤ (𝐽𝑘))
315314adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ≤ (𝐽𝑘))
316309rexrd 10693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
317306, 170ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π))
318305, 317sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
319318rexrd 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
320319adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
321 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
322 ioogtlb 41777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
323316, 320, 321, 322syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
324300, 309, 303, 315, 323lelttrd 10800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 < 𝑠)
325300, 303, 324ltled 10790 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑𝑠)
326318adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
327 iooltub 41793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
328316, 320, 321, 327syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
329 iccleub 12795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π)) → (𝐽‘(𝑘 + 1)) ≤ π)
330311, 312, 317, 329syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ π)
331330adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ π)
332303, 326, 301, 328, 331ltletrd 10802 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < π)
333303, 301, 332ltled 10790 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ≤ π)
334300, 301, 303, 325, 333eliccd 41786 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (𝑑[,]π))
335334ralrimiva 3184 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
336 dfss3 3958 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
337335, 336sylibr 236 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
338299, 337feqresmpt 6736 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
339 simplll 773 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
340 simpllr 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (0(,)π))
34164fveq1i 6673 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠)
342341a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠))
343 fvres 6691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (𝑑[,]π) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
344343adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
345247, 249eqtrd 2858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
346220, 345oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
347215recnd 10671 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℂ)
348235adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
349 2cnd 11718 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
350348halfcld 11885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
351350sincld 15485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
352349, 351mulcld 10663 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
353242adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
354347, 348, 352, 199, 353dmdcan2d 11448 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
355185, 346, 3543eqtrd 2862 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
356342, 344, 3553eqtrd 2862 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
357339, 340, 334, 356syl21anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
358339, 340, 334, 354syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
359358eqcomd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
360 eqidd 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)))
361 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
362361fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
363362oveq1d 7173 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑌) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
364 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
365363, 364oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
366365adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
367 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
368 ovex 7191 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V
369368a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V)
370360, 366, 367, 369fvmptd 6777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
371 eqidd 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
372 oveq1 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
373372fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
374373oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
375364, 374oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
376375adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
377 ovex 7191 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
378377a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
379371, 376, 367, 378fvmptd 6777 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380370, 379oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
381380eqcomd 2829 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
382381adantllr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
383357, 359, 3823eqtrd 2862 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
384383mpteq2dva 5163 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
385338, 384eqtr2d 2859 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
386385oveq2d 7174 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
38743a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
388337, 305sstrd 3979 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
38921tgioo2 23413 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39021, 389dvres 24511 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(𝑑[,]π)⟶ℂ) ∧ ((𝑑[,]π) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
391387, 299, 305, 388, 390syl22anc 836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
392 ioontr 41794 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
393392a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
394393reseq2d 5855 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
395386, 391, 3943eqtrrd 2863 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
39614ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
39715ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
398259ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
399261ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
400 fourierdlem104.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
401400ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40262adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ (-π[,]π))
403337, 402sstrd 3979 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
40453a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
405 0red 10646 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
40656ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < 𝑑)
407405, 310, 308, 406, 314ltletrd 10802 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < (𝐽𝑘))
408308, 319, 404, 407ltnelicc 41779 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
40927ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑌 ∈ ℝ)
41012a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
411269adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < π)
412 simpr 487 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
413 biid 263 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
414397, 258, 398, 399, 310, 410, 411, 402, 80, 73, 68, 125, 412, 286, 413fourierdlem50 42448 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
415414simpld 497 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
416414simprd 498 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
417365cbvmptv 5171 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
418375cbvmptv 5171 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419 eqid 2823 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
420396, 397, 258, 398, 399, 401, 308, 318, 173, 403, 408, 409, 80, 415, 416, 417, 418, 419fourierdlem72 42470 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
421395, 420eqeltrd 2915 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
422 eqid 2823 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
423 eqid 2823 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
424 fourierdlem104.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
425424, 415eqeltrid 2919 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
426 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
427426, 425jca 514 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
428 eleq1 2902 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
429428anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
430 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
431 oveq1 7165 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
432431fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
433430, 432oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
434 raleq 3407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
435433, 434syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
436435rexbidv 3299 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
437429, 436imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
438 fourierdlem104.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
439437, 438vtoclg 3569 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440425, 427, 439sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
441 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁))
442 nfra1 3221 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
443441, 442nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
44547a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
446445, 15readdcld 10672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
44712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
448447, 15readdcld 10672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
449446, 448iccssred 41787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
450 ressxr 10687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
451449, 450sstrdi 3981 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
452451ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
453258, 398, 399fourierdlem15 42414 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
454 elfzofz 13056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
455425, 454syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
456453, 455ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
457452, 456sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
458457adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
459 fzofzp1 13137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
460425, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
461453, 460ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462452, 461sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
463462adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
464 elioore 12771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
465464adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
46647a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
467466, 410, 397, 258, 398, 399, 455, 80fourierdlem13 42412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
468467simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
469468adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
470449ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
471470, 456sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
472471adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
473469, 472eqeltrrd 2916 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
474397, 308readdcld 10672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
475474adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
476467simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
477471, 397resubcld 11070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
478476, 477eqeltrd 2915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
479466, 410, 397, 258, 398, 399, 460, 80fourierdlem13 42412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
480479simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
481470, 461sseldd 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
482481, 397resubcld 11070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
483480, 482eqeltrd 2915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
484424eqcomi 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
485484fveq2i 6675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
486484oveq1i 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
487486fveq2i 6675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
488485, 487oveq12i 7170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
489416, 488sseqtrdi 4019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
490478, 483, 308, 318, 173, 489fourierdlem10 42409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
491490simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
492478, 308, 397, 491leadd2dd 11257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
493492adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
494475rexrd 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
495397, 318readdcld 10672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
496495rexrd 10693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
497496adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
498 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
499 ioogtlb 41777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
500494, 497, 498, 499syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
501473, 475, 465, 493, 500lelttrd 10800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
502469, 501eqbrtrd 5090 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
503495adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
504479simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
505504, 481eqeltrrd 2916 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
506505adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
507 iooltub 41793 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
508494, 497, 498, 507syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
509490simprd 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
510318, 483, 397, 509leadd2dd 11257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
511510adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
512465, 503, 506, 508, 511ltletrd 10802 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
513504eqcomd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
514513adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
515512, 514breqtrd 5094 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
516458, 463, 465, 502, 515eliood 41780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
517516adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
518 rspa 3208 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
519444, 517, 518syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
520519ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
521443, 520ralrimi 3218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
522521ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
523522reximdv 3275 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
524440, 523mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
525433raleqdv 3417 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
526525rexbidv 3299 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
527429, 526imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
528 fourierdlem104.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
529527, 528vtoclg 3569 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
530425, 427, 529sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
531 nfra1 3221 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
532441, 531nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53314, 44fssd 6530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
534 ssid 3991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
535534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
536 ioossre 12801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
537536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
53821, 389dvres 24511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
53944, 533, 535, 537, 538syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
540 ioontr 41794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
541540reseq2i 5852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
542539, 541syl6eq 2874 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
543542fveq1d 6674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
544 fvres 6691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
545543, 544sylan9eq 2878 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
546545ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
547546fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
548547adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
549 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
550516adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
551 rspa 3208 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
552549, 550, 551syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
553548, 552eqbrtrd 5090 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
554553ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
555532, 554ralrimi 3218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
556555ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
557556reximdv 3275 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
558530, 557mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
559311, 312, 306, 412fourierdlem8 42407 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
560124ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
561149, 304fssd 6530 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶ℝ)
562561ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
563 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ (𝑑[,]π))
564150eqcomd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 = (𝐽‘0))
565151eqcomd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → π = (𝐽𝑁))
566564, 565oveq12d 7176 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
567566adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
568563, 567eleqtrd 2917 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
569568adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
570 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
571 fveq2 6672 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
572571breq1d 5078 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
573572cbvrabv 3493 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
574573supeq1i 8913 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
575560, 562, 569, 570, 574fourierdlem25 42424 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
576533ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
577534a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
578536a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
579387, 576, 577, 578, 538syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
580516ralrimiva 3184 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
581 dfss3 3958 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
582580, 581sylibr 236 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
583 resabs2 5887 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584582, 583syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
585541, 579, 5843eqtr4a 2884 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
586582resabs1d 5886 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
587586eqcomd 2829 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
588585, 584, 5873eqtrrd 2863 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
589433reseq2d 5855 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
590589, 433feq12d 6504 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
591429, 590imbi12d 347 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
592 cncff 23503 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
593400, 592syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
594591, 593vtoclg 3569 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
595594anabsi7 669 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
596427, 595syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
597596, 582fssresd 6547 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
598588, 597feq1dd 41430 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
599363, 374oveq12d 7176 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
600599cbvmptv 5171 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
601 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
602601fveq2d 6676 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
603602breq1d 5078 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
604603cbvralvw 3451 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
605604anbi2i 624 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
606 fveq2 6672 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
607606fveq2d 6676 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
608607breq1d 5078 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
609608cbvralvw 3451 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
610605, 609anbi12i 628 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
611256, 257, 11, 13, 62, 276, 277, 422, 423, 524, 558, 149, 173, 559, 575, 598, 600, 610fourierdlem80 42478 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
612354mpteq2dva 5163 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
613253, 612eqtrd 2858 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
614613oveq2d 7174 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
615614dmeqd 5776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
616 nfcv 2979 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
617 nfcv 2979 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
618 nfcv 2979 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
619 nfmpt1 5166 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
620617, 618, 619nfov 7188 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
621620nfdm 5825 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
622616, 621raleqf 3399 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
623615, 622syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
624614fveq1d 6674 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
625624fveq2d 6676 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
626625breq1d 5078 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
627626ralbidv 3199 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
628623, 627bitrd 281 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
629628rexbidv 3299 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
630611, 629mpbird 259 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
631 eqid 2823 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
632 eqeq1 2827 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
633 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
634 oveq1 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
635634fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
636633, 635oveq12d 7176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
637636sseq2d 4001 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
638637cbvriotavw 7126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
639638fveq2i 6675 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
640639eqeq2i 2836 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
641640a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
642 csbeq1 3888 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
643638, 642mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
644641, 643ifbieq1d 4492 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
645644mptru 1544 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
646645oveq1i 7168 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌)
647646oveq1i 7168 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘))
648647oveq1i 7168 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
649648a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
650 eqeq1 2827 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
651638oveq1i 7168 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
652651fveq2i 6675 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
653652eqeq2i 2836 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
654653a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
655 csbeq1 3888 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
656638, 655mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
657654, 656ifbieq1d 4492 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
658657mptru 1544 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
659658oveq1i 7168 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌)
660659oveq1i 7168 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1)))
661660oveq1i 7168 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
662661a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
663 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
664650, 662, 663ifbieq12d 4496 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
665632, 649, 664ifbieq12d 4496 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
666665cbvmptv 5171 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
66711, 13, 67, 124, 149, 150, 151, 173, 289, 294, 297, 298, 421, 630, 631, 666fourierdlem73 42471 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
668 breq2 5072 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
669668rexralbidv 3303 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
670669cbvralvw 3451 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
671667, 670sylib 220 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
672671adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
673 rphalfcl 12419 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
674673ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (𝑒 / 2) ∈ ℝ+)
675 breq2 5072 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
676675rexralbidv 3303 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
677676rspccva 3624 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
678672, 674, 677syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
679138a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑(,)π) ⊆ (𝑑[,]π))
680679sselda 3969 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (𝑑[,]π))
681680, 343syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
682341, 681syl5req 2871 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → (𝑈𝑠) = (𝑂𝑠))
683682oveq1d 7173 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
684683itgeq2dv 24384 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
685684adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
686685fveq2d 6676 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
687 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688686, 687eqbrtrd 5090 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
689688ex 415 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
690689adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
691690ralimdv 3180 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
692691reximdv 3275 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
693678, 692mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
694693adantr 483 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
695 nfv 1915 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π))
696 nfra1 3221 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
697695, 696nfan 1900 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
698 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
699697, 698nfan 1900 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
700 nfv 1915 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
701699, 700nfan 1900 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
702 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)))
703 eluznn 12321 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
704703adantll 712 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
705702, 704jca 514 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
706705adantllr 717 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
707 simpllr 774 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708703adantll 712 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
709 rspa 3208 . . . . . . . . . . . . . . . . . 18 ((∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
710707, 708, 709syl2anc 586 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
711706, 710jca 514 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
712711adantlr 713 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
713 nnre 11647 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
714713rexrd 10693 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
715714adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
71622a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
717 eluzelre 12257 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
718 halfre 11854 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ
719718a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
720717, 719readdcld 10672 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
721720adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
722713adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
723717adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
724 eluzle 12259 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
725724adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
726 halfgt0 11856 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
727726a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
728718a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
729728, 723ltaddposd 11226 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
730727, 729mpbid 234 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
731722, 723, 721, 725, 730lelttrd 10800 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
732721ltpnfd 12519 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
733715, 716, 721, 731, 732eliood 41780 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
734733adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
735 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
736 oveq1 7165 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
737736fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
738737oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
739738adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
740739itgeq2dv 24384 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
741740fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
742741breq1d 5078 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
743742rspcv 3620 . . . . . . . . . . . . . . . . 17 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
744734, 735, 743sylc 65 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
745744adantlll 716 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
746 fourierdlem104.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
747712, 745, 746sylanbrc 585 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
748 0red 10646 . . . . . . . . . . . . . . . . 17 (𝜒 → 0 ∈ ℝ)
74912a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → π ∈ ℝ)
750 ioossicc 12825 . . . . . . . . . . . . . . . . . 18 (0(,)π) ⊆ (0[,]π)
751746biimpi 218 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
752 simp-4r 782 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (0(,)π))
753751, 752syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (0(,)π))
754750, 753sseldi 3967 . . . . . . . . . . . . . . . . 17 (𝜒𝑑 ∈ (0[,]π))
755 simp-5l 783 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
756751, 755syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
75742adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
75847rexri 10701 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ*
759 0re 10645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
76047, 759, 51ltleii 10765 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ≤ 0
761 iooss1 12776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ* ∧ -π ≤ 0) → (0(,)π) ⊆ (-π(,)π))
762758, 760, 761mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (0(,)π) ⊆ (-π(,)π)
763 ioossicc 12825 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π[,]π)
764762, 763sstri 3978 . . . . . . . . . . . . . . . . . . . . . . 23 (0(,)π) ⊆ (-π[,]π)
765764sseli 3965 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (-π[,]π))
766765adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
767757, 766ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
768756, 767sylan 582 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
769 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
770751, 769syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℕ)
771770nnred 11655 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑘 ∈ ℝ)
772718a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (1 / 2) ∈ ℝ)
773771, 772readdcld 10672 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
774773adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → (𝑘 + (1 / 2)) ∈ ℝ)
775 elioore 12771 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
776775adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
777774, 776remulcld 10673 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
778777resincld 15498 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
779768, 778remulcld 10673 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
780779recnd 10671 . . . . . . . . . . . . . . . . 17 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
78153a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ∈ ℝ*)
78254a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ∈ ℝ*)
783748leidd 11208 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 0)
784 ioossre 12801 . . . . . . . . . . . . . . . . . . . . 21 (0(,)π) ⊆ ℝ
785784, 753sseldi 3967 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ∈ ℝ)
786781, 782, 753, 104syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 < π)
787785, 749, 786ltled 10790 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ≤ π)
788 ioossioo 12832 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ π)) → (0(,)𝑑) ⊆ (0(,)π))
789781, 782, 783, 787, 788syl22anc 836 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ⊆ (0(,)π))
790 ioombl 24168 . . . . . . . . . . . . . . . . . . 19 (0(,)𝑑) ∈ dom vol
791790a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ∈ dom vol)
792 eleq1 2902 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
793792anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
794 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → 𝑛 = 𝑘)
795794oveq1d 7173 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
796795oveq1d 7173 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
797796fveq2d 6676 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
798797oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
799798mpteq2dva 5163 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
800799eleq1d 2899 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
801793, 800imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
802764a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
803 ioombl 24168 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)π) ∈ dom vol
804803a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
80542ffvelrnda 6853 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
806805adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
807 nnre 11647 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
808 readdcl 10622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
809807, 718, 808sylancl 588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
810809adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
811 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
812210, 811sseldi 3967 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
813810, 812remulcld 10673 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
814813resincld 15498 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
815814adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
816806, 815remulcld 10673 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
817 fourierdlem104.g . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
818 fourierdlem104.s . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
819818fvmpt2 6781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
820811, 814, 819syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
821820adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
822821oveq2d 7174 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
823822mpteq2dva 5163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
824817, 823syl5req 2871 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
82514adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
826 fourierdlem104.x . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ ran 𝑉)
827826adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
82826adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
82937adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
830807adantl 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
831259adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
832261adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
833263adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
834265adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
835267adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
836 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
837 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D 𝐹) = (ℝ D 𝐹)
838593adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
839 fourierdlem104.a . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
840839adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
841 fourierdlem104.b . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
842841adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
843258, 825, 827, 828, 829, 39, 40, 41, 830, 818, 817, 831, 832, 833, 834, 835, 80, 836, 837, 838, 840, 842fourierdlem88 42486 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
844824, 843eqeltrd 2915 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
845802, 804, 816, 844iblss 24407 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
846801, 845chvarvv 2005 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
847756, 770, 846syl2anc 586 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
848789, 791, 779, 847iblss 24407 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (0(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
849781, 782, 753, 55syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 < 𝑑)
850748, 785, 849ltled 10790 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 𝑑)
851749leidd 11208 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ≤ π)
852 ioossioo 12832 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 𝑑 ∧ π ≤ π)) → (𝑑(,)π) ⊆ (0(,)π))
853781, 782, 850, 851, 852syl22anc 836 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ⊆ (0(,)π))
854 ioombl 24168 . . . . . . . . . . . . . . . . . . 19 (𝑑(,)π) ∈ dom vol
855854a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ∈ dom vol)
856853, 855, 779, 847iblss 24407 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (𝑑(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
857748, 749, 754, 780, 848, 856itgsplitioo 24440 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
858857fveq2d 6676 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
859789sselda 3969 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)𝑑)) → 𝑠 ∈ (0(,)π))
860859, 779syldan 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
861860, 848itgcl 24386 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
862853sselda 3969 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (0(,)π))
863862, 779syldan 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
864863, 856itgcl 24386 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
865861, 864addcld 10662 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
866865abscld 14798 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
867861abscld 14798 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
868864abscld 14798 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
869867, 868readdcld 10672 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
870 simp-5r 784 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
871751, 870syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
872871rpred 12434 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
873861, 864abstrid 14818 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
874751simplrd 768 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
875751simprd 498 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
876867, 868, 872, 874, 875lt2halvesd 11888 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
877866, 869, 872, 873, 876lelttrd 10800 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
878858, 877eqbrtrd 5090 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
879747, 878syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
880879ex 415 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
881701, 880ralrimi 3218 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
882881ex 415 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
883882reximdva 3276 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
884694, 883mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
885 pipos 25048 . . . . . . . . . . . . . 14 0 < π
88647, 759, 12lttri 10768 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
88751, 885, 886mp2an 690 . . . . . . . . . . . . 13 -π < π
88847, 12, 887ltleii 10765 . . . . . . . . . . . 12 -π ≤ π
889888a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
890258fourierdlem2 42401 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
891259, 890syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
892261, 891mpbid 234 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
893892simpld 497 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
894 elmapi 8430 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
895893, 894syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
896895ffvelrnda 6853 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
89715adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
898896, 897resubcld 11070 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
899898, 80fmptd 6880 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
90080a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
901 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
902901oveq1d 7173 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
903902adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
904259nnnn0d 11958 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
905 nn0uz 12283 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
906904, 905eleqtrdi 2925 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
907 eluzfz1 12917 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
908906, 907syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
909895, 908ffvelrnd 6854 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
910909, 15resubcld 11070 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
911900, 903, 908, 910fvmptd 6777 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
912892simprd 498 . . . . . . . . . . . . . 14 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
913912simplld 766 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
914913oveq1d 7173 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
915445recnd 10671 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
91615recnd 10671 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
917915, 916pncand 11000 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
918911, 914, 9173eqtrd 2862 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
919445, 447, 15, 258, 836, 259, 261, 80fourierdlem14 42413 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
920836fourierdlem2 42401 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
921259, 920syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
922919, 921mpbid 234 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
923922simprd 498 . . . . . . . . . . . 12 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
924923simplrd 768 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
925923simprd 498 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
926925r19.21bi 3210 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
92714adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
928836, 259, 919fourierdlem15 42414 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
929928adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
930 elfzofz 13056 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
931930adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
932929, 931ffvelrnd 6854 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
933 fzofzp1 13137 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
934933adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
935929, 934ffvelrnd 6854 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
93615adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
937 ffn 6516 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
938893, 894, 9373syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
939 fvelrnb 6728 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
940938, 939syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
941826, 940mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
942 oveq1 7165 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
943942adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
944916subidd 10987 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
945944ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
946943, 945eqtr2d 2859 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
947946ex 415 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
948947reximdva 3276 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
949941, 948mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
95080elrnmpt 5830 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
951759, 950ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
952949, 951sylibr 236 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
953836, 259, 919, 952fourierdlem12 42411 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
954895adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
955954, 931ffvelrnd 6854 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
956955, 936resubcld 11070 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
95780fvmpt2 6781 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
958931, 956, 957syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
959958oveq1d 7173 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
960955recnd 10671 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
961916adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
962960, 961npcand 11003 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
963959, 962eqtrd 2858 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
964 fveq2 6672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
965964oveq1d 7173 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
966965cbvmptv 5171 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
96780, 966eqtr4i 2849 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
968967a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
969 fveq2 6672 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
970969oveq1d 7173 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
971970adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
972954, 934ffvelrnd 6854 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
973972, 936resubcld 11070 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
974968, 971, 934, 973fvmptd 6777 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
975974oveq1d 7173 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
976972recnd 10671 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
977976, 961npcand 11003 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
978975, 977eqtrd 2858 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
979963, 978oveq12d 7176 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
980979reseq2d 5855 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
981979oveq1d 7173 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
982263, 980, 9813eltr4d 2930 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
98327adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
98438adantr 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
985927, 932, 935, 936, 953, 982, 983, 984, 39fourierdlem40 42439 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
986 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
98743a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
988986, 987fssd 6530 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
989400, 592, 9883syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
990 eqid 2823 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
99115, 258, 14, 826, 26, 38, 39, 259, 261, 265, 80, 836, 837, 989, 841, 990fourierdlem75 42473 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
992 eqid 2823 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
99315, 258, 14, 826, 27, 37, 39, 259, 261, 267, 80, 836, 837, 593, 839, 992fourierdlem74 42472 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
994 fveq2 6672 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
995 oveq1 7165 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
996995fveq2d 6676 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
997994, 996oveq12d 7176 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
998997cbvmptv 5171 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
999445, 447, 889, 177, 259, 899, 918, 924, 926, 985, 991, 993, 998fourierdlem70 42468 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1000 eqid 2823 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1001 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10021001fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10031002breq1d 5078 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10041003cbvralvw 3451 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10051004ralbii 3167 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
100610053anbi3i 1155 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10071006anbi1i 625 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10081007anbi1i 625 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10091008anbi1i 625 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
101014, 15, 27, 38, 39, 40, 41, 818, 817, 999, 843, 1000, 1009fourierdlem87 42485 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1011 iftrue 4475 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10121011adantl 484 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
101353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
101454a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ*)
1015 rpre 12400 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10161015adantr 483 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
1017 rpgt0 12404 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10181017adantr 483 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < 𝑐)
101912rehalfcli 11889 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
10201019a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
102112a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1022 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1023 halfpos 11870 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
102412, 1023ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 < π ↔ (π / 2) < π)
1025885, 1024mpbi 232 . . . . . . . . . . . . . . . . 17 (π / 2) < π
10261025a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10271016, 1020, 1021, 1022, 1026lelttrd 10800 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10281013, 1014, 1016, 1018, 1027eliood 41780 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ (0(,)π))
10291012, 1028eqeltrd 2915 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1030 iffalse 4478 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
1031 2pos 11743 . . . . . . . . . . . . . . . . . 18 0 < 2
103212, 100, 885, 1031divgt0ii 11559 . . . . . . . . . . . . . . . . 17 0 < (π / 2)
1033 elioo2 12782 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π)))
103453, 54, 1033mp2an 690 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π))
10351019, 1032, 1025, 1034mpbir3an 1337 . . . . . . . . . . . . . . . 16 (π / 2) ∈ (0(,)π)
10361035a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → (π / 2) ∈ (0(,)π))
10371030, 1036eqeltrd 2915 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10381037adantl 484 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10391029, 1038pm2.61dan 811 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
104010393ad2ant2 1130 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1041 ioombl 24168 . . . . . . . . . . . . . . 15 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol
10421041a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol)
1043 simpr 487 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10441042, 1043jca 514 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1045 ioossicc 12825 . . . . . . . . . . . . . . . 16 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
104647a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
104712a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
1048760a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ 0)
1049784, 1039sseldi 3967 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
10501019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
1051 min2 12586 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10521015, 1019, 1051sylancl 588 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10531025a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) < π)
10541049, 1050, 1047, 1052, 1053lelttrd 10800 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) < π)
10551049, 1047, 1054ltled 10790 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)
1056 iccss 12807 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)) → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10571046, 1047, 1048, 1055, 1056syl22anc 836 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10581045, 1057sstrid 3980 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
1059 0red 10646 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
10601018, 1012breqtrrd 5096 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10611032, 1030breqtrrid 5106 . . . . . . . . . . . . . . . . . . . . 21 𝑐 ≤ (π / 2) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10621061adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10631060, 1062pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10641059, 1049, 1063ltled 10790 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1065 volioo 24172 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10661059, 1049, 1064, 1065syl3anc 1367 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10671049recnd 10671 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
10681067subid1d 10988 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10691066, 1068eqtrd 2858 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1070 min1 12585 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10711015, 1019, 1070sylancl 588 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10721069, 1071eqbrtrd 5090 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)
10731058, 1072jca 514 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10741073adantr 483 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
1075 sseq1 3994 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (𝑢 ⊆ (-π[,]π) ↔ (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π)))
1076 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘𝑢) = (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))))
10771076breq1d 5078 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10781075, 1077anbi12d 632 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)))
1079 itgeq1 24375 . . . . . . . . . . . . . . . . . 18 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10801079fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10811080breq1d 5078 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10821081ralbidv 3199 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10831078, 1082imbi12d 347 . . . . . . . . . . . . . 14 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
10841083rspcva 3623 . . . . . . . . . . . . 13 (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10851044, 1074, 1084sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
108610853adant1 1126 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1087 oveq2 7166 . . . . . . . . . . . . . . . 16 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (0(,)𝑑) = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
10881087itgeq1d 42249 . . . . . . . . . . . . . . 15 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10891088fveq2d 6676 . . . . . . . . . . . . . 14 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10901089breq1d 5078 . . . . . . . . . . . . 13 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10911090ralbidv 3199 . . . . . . . . . . . 12 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10921091rspcev 3625 . . . . . . . . . . 11 ((if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10931040, 1086, 1092syl2anc 586 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10941093rexlimdv3a 3288 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10951010, 1094mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1096884, 1095r19.29a 3291 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
10971096ralrimiva 3184 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1098 nnex 11646 . . . . . . . . 9 ℕ ∈ V
10991098mptex 6988 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V
11001099a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V)
1101 eqidd 2824 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠))
1102765adantl 484 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1103767ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1104765adantl 484 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1105 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1106 simpl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11071105, 1106eqeltrd 2915 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11081107nnred 11655 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1109718a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11101108, 1109readdcld 10672 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11111110adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1112210, 1104sseldi 3967 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11131111, 1112remulcld 10673 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11141113resincld 15498 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11151104, 1114, 819syl2anc 586 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11161115adantlll 716 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11171108adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11181117adantr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑛 ∈ ℝ)
1119 1red 10644 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 1 ∈ ℝ)
11201119rehalfcld 11887 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (1 / 2) ∈ ℝ)
11211118, 1120readdcld 10672 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1122210, 1102sseldi 3967 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11231121, 1122remulcld 10673 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11241123resincld 15498 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11251116, 1124eqeltrd 2915 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) ∈ ℝ)
11261103, 1125remulcld 10673 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1127817fvmpt2 6781 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11281102, 1126, 1127syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1129 oveq1 7165 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11301129oveq1d 7173 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11311130fveq2d 6676 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11321131ad2antlr 725 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11331116, 1132eqtrd 2858 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11341133oveq2d 7174 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11351128, 1134eqtrd 2858 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11361135itgeq2dv 24384 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1137 simpr 487 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1138798itgeq2dv 24384 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11391138eleq1d 2899 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1140793, 1139imbi12d 347 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1141767adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1142 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11431142, 765, 814syl2an 597 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11441141, 1143remulcld 10673 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11451144, 845itgcl 24386 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11461140, 1145chvarvv 2005 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11471101, 1136, 1137, 1146fvmptd 6777 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑘) = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11489, 2, 1100, 1147, 1146clim0c 14866 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
11491097, 1148mpbird 259 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0)
11501098mptex 6988 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π)) ∈ V
11516, 1150eqeltri 2911 . . . . . 6 𝐸 ∈ V
11521151a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
11531098mptex 6988 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
11541153a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
115512recni 10657 . . . . . . 7 π ∈ ℂ
11561155a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1157 eqidd 2824 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1158 eqidd 2824 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1159 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
116012a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
11611157, 1158, 1159, 1160fvmptd 6777 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11621161adantl 484 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11639, 2, 1154, 1156, 1162climconst 14902 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1164759, 885gtneii 10754 . . . . . 6 π ≠ 0
11651164a1i 11 . . . . 5 (𝜑 → π ≠ 0)
116615adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
116727adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
116838adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1169825, 1166, 1167, 1168, 39, 40, 41, 830, 818, 817fourierdlem67 42465 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
11701169adantr 483 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝐺:(-π[,]π)⟶ℝ)
1171802sselda 3969 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
11721170, 1171ffvelrnd 6854 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) ∈ ℝ)
11731169ffvelrnda 6853 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
11741169feqmptd 6735 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
11751174, 843eqeltrrd 2916 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1176802, 804, 1173, 1175iblss 24407 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ (𝐺𝑠)) ∈ 𝐿1)
11771172, 1176itgcl 24386 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ)
1178 eqid 2823 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
11791178fvmpt2 6781 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11801142, 1177, 1179syl2anc 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11811180, 1177eqeltrd 2915 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1182 eqid 2823 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
11831182fvmpt2 6781 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
118412, 1183mpan2 689 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
11851155a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ∈ ℂ)
11861164a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ≠ 0)
1187 eldifsn 4721 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
11881185, 1186, 1187sylanbrc 585 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
11891184, 1188eqeltrd 2915 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11901189adantl 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11911155a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
11921164a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
11931177, 1191, 1192divcld 11418 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
11946fvmpt2 6781 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11951142, 1193, 1194syl2anc 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11961180eqcomd 2829 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛))
11971184eqcomd 2829 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11981197adantl 484 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11991196, 1198oveq12d 7176 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12001195, 1199eqtrd 2858 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12013, 4, 5, 8, 9, 2, 1149, 1152, 1163, 1165, 1181, 1190, 1200climdivf 41900 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12021155, 1164div0i 11376 . . . . 5 (0 / π) = 0
12031202a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12041201, 1203breqtrd 5094 . . 3 (𝜑𝐸 ⇝ 0)
1205 fourierdlem104.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12061098mptex 6988 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12071205, 1206eqeltri 2911 . . . 4 𝑍 ∈ V
12081207a1i 11 . . 3 (𝜑𝑍 ∈ V)
12091098mptex 6988 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V
12101209a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V)
1211 limccl 24475 . . . . . 6 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
12121211, 26sseldi 3967 . . . . 5 (𝜑𝑌 ∈ ℂ)
12131212halfcld 11885 . . . 4 (𝜑 → (𝑌 / 2) ∈ ℂ)
1214 eqidd 2824 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) = (𝑚 ∈ ℕ ↦ (𝑌 / 2)))
1215 eqidd 2824 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑌 / 2) = (𝑌 / 2))
12169eqcomi 2832 . . . . . . . 8 (ℤ‘1) = ℕ
12171216eleq2i 2906 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12181217biimpi 218 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12191218adantl 484 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12201213adantr 483 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑌 / 2) ∈ ℂ)
12211214, 1215, 1219, 1220fvmptd 6777 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) = (𝑌 / 2))
12221, 2, 1210, 1213, 1221climconst 14902 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ⇝ (𝑌 / 2))
12231193, 6fmptd 6880 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12241223adantr 483 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12251224, 1219ffvelrnd 6854 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12261221, 1220eqeltrd 2915 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) ∈ ℂ)
12271221oveq2d 7174 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑌 / 2)))
1228803a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
1229 0red 10646 . . . . . . . . . . . . . 14 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ)
12301229rexrd 10693 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ*)
123154a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → π ∈ ℝ*)
1232 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (0(,)π))
1233 ioogtlb 41777 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12341230, 1231, 1232, 1233syl3anc 1367 . . . . . . . . . . . 12 (𝑠 ∈ (0(,)π) → 0 < 𝑠)
12351234gt0ne0d 11206 . . . . . . . . . . 11 (𝑠 ∈ (0(,)π) → 𝑠 ≠ 0)
12361235neneqd 3023 . . . . . . . . . 10 (𝑠 ∈ (0(,)π) → ¬ 𝑠 = 0)
1237 velsn 4585 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12381236, 1237sylnibr 331 . . . . . . . . 9 (𝑠 ∈ (0(,)π) → ¬ 𝑠 ∈ {0})
1239765, 1238eldifd 3949 . . . . . . . 8 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12401239ssriv 3973 . . . . . . 7 (0(,)π) ⊆ ((-π[,]π) ∖ {0})
12411240a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ((-π[,]π) ∖ {0}))
1242 fourierdlem104.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
12431234adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12441243iftrued 4477 . . . . . 6 ((𝜑𝑠 ∈ (0(,)π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
1245 eqid 2823 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
1246 0red 10646 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
124712a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
1248759, 12, 885ltleii 10765 . . . . . . . . 9 0 ≤ π
12491248a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
1250 eqid 2823 . . . . . . . 8 (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
12511242, 1142, 1245, 1246, 1247, 1249, 1250dirkeritg 42394 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)))
1252 ubicc2 12856 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
125353, 54, 1248, 1252mp3an 1457 . . . . . . . . . 10 π ∈ (0[,]π)
1254 oveq1 7165 . . . . . . . . . . . . 13 (𝑠 = π → (𝑠 / 2) = (π / 2))
1255 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑠 = π → (𝑘 · 𝑠) = (𝑘 · π))
12561255fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑠 = π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · π)))
12571256oveq1d 7173 . . . . . . . . . . . . . . . 16 (𝑠 = π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · π)) / 𝑘))
1258 elfzelz 12911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
12591258zcnd 12091 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
12601155a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
12611164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ≠ 0)
12621259, 1260, 1261divcan4d 11424 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) = 𝑘)
12631262, 1258eqeltrd 2915 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) ∈ ℤ)
12641259, 1260mulcld 10663 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · π) ∈ ℂ)
1265 sineq0 25111 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 · π) ∈ ℂ → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12661264, 1265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12671263, 1266mpbird 259 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · π)) = 0)
12681267oveq1d 7173 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = (0 / 𝑘))
1269 0red 10646 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1270 1red 10644 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
12711258zred 12090 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
127298a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 < 1)
1273 elfzle1 12913 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
12741269, 1270, 1271, 1272, 1273ltletrd 10802 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
12751274gt0ne0d 11206 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
12761259, 1275div0d 11417 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
12771268, 1276eqtrd 2858 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = 0)
12781257, 1277sylan9eq 2878 . . . . . . . . . . . . . . 15 ((𝑠 = π ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12791278sumeq2dv 15062 . . . . . . . . . . . . . 14 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1280 fzfi 13343 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
12811280olci 862 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1282 sumz 15081 . . . . . . . . . . . . . . 15 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
12831281, 1282ax-mp 5 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)0 = 0
12841279, 1283syl6eq 2874 . . . . . . . . . . . . 13 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12851254, 1284oveq12d 7176 . . . . . . . . . . . 12 (𝑠 = π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((π / 2) + 0))
12861285oveq1d 7173 . . . . . . . . . . 11 (𝑠 = π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((π / 2) + 0) / π))
1287 ovex 7191 . . . . . . . . . . 11 (((π / 2) + 0) / π) ∈ V
12881286, 1250, 1287fvmpt 6770 . . . . . . . . . 10 (π ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π))
12891253, 1288ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π)
1290 lbicc2 12855 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
129153, 54, 1248, 1290mp3an 1457 . . . . . . . . . 10 0 ∈ (0[,]π)
1292 oveq1 7165 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1293 2cn 11715 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
12941293, 238div0i 11376 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
12951292, 1294syl6eq 2874 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1296 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
12971259mul01d 10841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
12981296, 1297sylan9eq 2878 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
12991298fveq2d 6676 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1300 sin0 15504 . . . . . . . . . . . . . . . . . . . 20 (sin‘0) = 0
13011299, 1300syl6eq 2874 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13021301oveq1d 7173 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
13031276adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13041302, 1303eqtrd 2858 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13051304sumeq2dv 15062 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
13061305, 1283syl6eq 2874 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13071295, 1306oveq12d 7176 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1308 00id 10817 . . . . . . . . . . . . . 14 (0 + 0) = 0
13091307, 1308syl6eq 2874 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13101309oveq1d 7173 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13111310, 1202syl6eq 2874 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1312 c0ex 10637 . . . . . . . . . . 11 0 ∈ V
13131311, 1250, 1312fvmpt 6770 . . . . . . . . . 10 (0 ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13141291, 1313ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
13151289, 1314oveq12i 7170 . . . . . . . 8 (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0)
13161315a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0))
13171019recni 10657 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
13181317addid1i 10829 . . . . . . . . . . . 12 ((π / 2) + 0) = (π / 2)
13191318oveq1i 7168 . . . . . . . . . . 11 (((π / 2) + 0) / π) = ((π / 2) / π)
13201155, 1293, 1155, 238, 1164divdiv32i 11397 . . . . . . . . . . 11 ((π / 2) / π) = ((π / π) / 2)
13211155, 1164dividi 11375 . . . . . . . . . . . 12 (π / π) = 1
13221321oveq1i 7168 . . . . . . . . . . 11 ((π / π) / 2) = (1 / 2)
13231319, 1320, 13223eqtri 2850 . . . . . . . . . 10 (((π / 2) + 0) / π) = (1 / 2)
13241323oveq1i 7168 . . . . . . . . 9 ((((π / 2) + 0) / π) − 0) = ((1 / 2) − 0)
1325 halfcn 11855 . . . . . . . . . 10 (1 / 2) ∈ ℂ
13261325subid1i 10960 . . . . . . . . 9 ((1 / 2) − 0) = (1 / 2)
13271324, 1326eqtri 2846 . . . . . . . 8 ((((π / 2) + 0) / π) − 0) = (1 / 2)
13281327a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((((π / 2) + 0) / π) − 0) = (1 / 2))
13291251, 1316, 13283eqtrd 2862 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
133014, 15, 258, 259, 261, 826, 263, 265, 267, 39, 40, 41, 818, 817, 837, 593, 839, 841, 26, 37, 1228, 1241, 6, 1242, 27, 1244, 1329fourierdlem95 42493 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13311219, 1330syldan 593 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13321205a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1333 fveq2 6672 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
13341333fveq1d 6674 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
13351334oveq2d 7174 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13361335adantr 483 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13371336itgeq2dv 24384 . . . . . . . 8 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13381337adantl 484 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
133914adantr 483 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
134015adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
1341775adantl 484 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13421340, 1341readdcld 10672 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
13431339, 1342ffvelrnd 6854 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13441343adantlr 713 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13451242dirkerf 42389 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
13461345ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐷𝑛):ℝ⟶ℝ)
1347775adantl 484 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13481346, 1347ffvelrnd 6854 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13491344, 1348remulcld 10673 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
135014adantr 483 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
135115adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1352210sseli 3965 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
13531352adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13541351, 1353readdcld 10672 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
13551350, 1354ffvelrnd 6854 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13561355adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13571345ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
13581352adantl 484 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13591357, 1358ffvelrnd 6854 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13601356, 1359remulcld 10673 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
136147a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
13621242dirkercncf 42399 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
13631362adantl 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1364 eqid 2823 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13651361, 1247, 825, 1166, 258, 831, 832, 833, 834, 835, 80, 836, 1363, 1364fourierdlem84 42482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1366802, 804, 1360, 1365iblss 24407 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
13671349, 1366itgrecl 24400 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
13681332, 1338, 1142, 1367fvmptd 6777 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13691368eqcomd 2829 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13701219, 1369syldan 593 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13711227, 1331, 13703eqtrrd 2863 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)))
13721, 2, 1204, 1208, 1222, 1225, 1226, 1371climadd 14990 . 2 (𝜑𝑍 ⇝ (0 + (𝑌 / 2)))
13731213addid2d 10843 . 2 (𝜑 → (0 + (𝑌 / 2)) = (𝑌 / 2))
13741372, 1373breqtrd 5094 1 (𝜑𝑍 ⇝ (𝑌 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  csb 3885  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  ifcif 4469  {csn 4569  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  cio 6314   Fn wfn 6352  wf 6353  cfv 6357   Isom wiso 6358  crio 7115  (class class class)co 7158  m cmap 8408  Fincfn 8511  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  0cn0 11900  cz 11984  cuz 12246  +crp 12392  (,)cioo 12741  [,]cicc 12744  ...cfz 12895  ..^cfzo 13036   mod cmo 13240  chash 13693  abscabs 14595  cli 14843  Σcsu 15044  sincsin 15419  πcpi 15422  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  intcnt 21627  cnccncf 23486  volcvol 24066  𝐿1cibl 24220  citg 24221   lim climc 24462   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-symdif 4221  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-t1 21924  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223  df-itg2 24224  df-ibl 24225  df-itg 24226  df-0p 24273  df-limc 24466  df-dv 24467
This theorem is referenced by:  fourierdlem112  42510
  Copyright terms: Public domain W3C validator