Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem104 Structured version   Visualization version   GIF version

Theorem fourierdlem104 46131
Description: The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem104.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem104.xre (𝜑𝑋 ∈ ℝ)
fourierdlem104.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem104.m (𝜑𝑀 ∈ ℕ)
fourierdlem104.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem104.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem104.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem104.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem104.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem104.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem104.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem104.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem104.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem104.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem104.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem104.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem104.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem104.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem104.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
fourierdlem104.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem104.o 𝑂 = (𝑈 ↾ (𝑑[,]π))
fourierdlem104.t 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
fourierdlem104.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem104.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem104.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem104.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem104.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem104 (𝜑𝑍 ⇝ (𝑌 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠   𝑄,𝑓   𝑄,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑊,𝑠   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑖,𝑌,𝑘,𝑙,𝑠,𝑡   𝑚,𝑌,𝑛,𝑖   𝑤,𝑌,𝑧   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑒,𝑓,𝑝,𝑑)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem104
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12674 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1913 . . . . 5 𝑛𝜑
4 nfmpt1 5274 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
5 nfmpt1 5274 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem104.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5274 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2906 . . . . 5 𝑛𝐸
9 nnuz 12946 . . . . 5 ℕ = (ℤ‘1)
10 elioore 13437 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (0(,)π) → 𝑑 ∈ ℝ)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ ℝ)
12 pire 26518 . . . . . . . . . . . . . . . 16 π ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ ℝ)
14 fourierdlem104.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
15 fourierdlem104.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
16 ioossre 13468 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1814, 17fssresd 6788 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
19 ioosscn 13469 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
21 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 pnfxr 11344 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2415ltpnfd 13184 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2521, 23, 15, 24lptioo1cn 45567 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
26 fourierdlem104.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2718, 20, 25, 26limcrecl 45550 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
28 ioossre 13468 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3014, 29fssresd 6788 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
31 ioosscn 13469 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
33 mnfxr 11347 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3515mnfltd 13187 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3621, 34, 15, 35lptioo2cn 45566 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
37 fourierdlem104.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3830, 32, 36, 37limcrecl 45550 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
39 fourierdlem104.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
40 fourierdlem104.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
41 fourierdlem104.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4214, 15, 27, 38, 39, 40, 41fourierdlem55 46082 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
43 ax-resscn 11241 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4542, 44fssd 6764 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℂ)
4712renegcli 11597 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4847a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ∈ ℝ)
4947a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π ∈ ℝ)
50 0red 11293 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 ∈ ℝ)
51 negpilt0 45195 . . . . . . . . . . . . . . . . . . . . . 22 -π < 0
5251a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → -π < 0)
53 0xr 11337 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
5412rexri 11348 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ ℝ*
55 ioogtlb 45413 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 0 < 𝑑)
5653, 54, 55mp3an12 1451 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 < 𝑑)
5749, 50, 10, 52, 56lttrd 11451 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π < 𝑑)
5849, 10, 57ltled 11438 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → -π ≤ 𝑑)
5958adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ≤ 𝑑)
6013leidd 11856 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → π ≤ π)
61 iccss 13475 . . . . . . . . . . . . . . . . . 18 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 𝑑 ∧ π ≤ π)) → (𝑑[,]π) ⊆ (-π[,]π))
6248, 13, 59, 60, 61syl22anc 838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ (-π[,]π))
6346, 62fssresd 6788 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ)
64 fourierdlem104.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (𝑑[,]π))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑈 ↾ (𝑑[,]π)))
6665feq1d 6732 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑂:(𝑑[,]π)⟶ℂ ↔ (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ))
6763, 66mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂:(𝑑[,]π)⟶ℂ)
68 fourierdlem104.n . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘𝑇) − 1)
6912elexi 3511 . . . . . . . . . . . . . . . . . . . . . . . . 25 π ∈ V
7069prid2 4788 . . . . . . . . . . . . . . . . . . . . . . . 24 π ∈ {𝑑, π}
71 elun1 4205 . . . . . . . . . . . . . . . . . . . . . . . 24 (π ∈ {𝑑, π} → π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
73 fourierdlem104.t . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
7472, 73eleqtrri 2843 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ 𝑇
7574ne0ii 4367 . . . . . . . . . . . . . . . . . . . . 21 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ≠ ∅)
77 prfi 9391 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑑, π} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑑, π} ∈ Fin)
79 fzfi 14023 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0...𝑀) ∈ Fin
80 fourierdlem104.q . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 45078 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ran 𝑄 ∈ Fin
83 infi 9330 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
8482, 83mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
85 unfi 9238 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑑, π} ∈ Fin ∧ (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8678, 84, 85syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8773, 86eqeltrid 2848 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ Fin)
88 hashnncl 14415 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9076, 89mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝑇) ∈ ℕ)
91 nnm1nn0 12594 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9368, 92eqeltrid 2848 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
9493adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
95 0red 11293 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 ∈ ℝ)
96 1red 11291 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ∈ ℝ)
9794nn0red 12614 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
98 0lt1 11812 . . . . . . . . . . . . . . . . . . 19 0 < 1
9998a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 1)
100 2re 12367 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ∈ ℝ)
10290nnred 12308 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝑇) ∈ ℝ)
103102adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘𝑇) ∈ ℝ)
104 iooltub 45428 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 𝑑 < π)
10553, 54, 104mp3an12 1451 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (0(,)π) → 𝑑 < π)
10610, 105ltned 11426 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → 𝑑 ≠ π)
107106adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≠ π)
108 hashprg 14444 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
10911, 12, 108sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
110107, 109mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) = 2)
111110eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 2 = (♯‘{𝑑, π}))
11287adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ∈ Fin)
113 ssun1 4201 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑑, π} ⊆ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
114113, 73sseqtrri 4046 . . . . . . . . . . . . . . . . . . . . . 22 {𝑑, π} ⊆ 𝑇
115 hashssle 45213 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ∈ Fin ∧ {𝑑, π} ⊆ 𝑇) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
116112, 114, 115sylancl 585 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
117111, 116eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ≤ (♯‘𝑇))
118101, 103, 96, 117lesub1dd 11906 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
119 1e2m1 12420 . . . . . . . . . . . . . . . . . . 19 1 = (2 − 1)
120118, 119, 683brtr4g 5200 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ≤ 𝑁)
12195, 96, 97, 99, 120ltletrd 11450 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 𝑁)
122121gt0ne0d 11854 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ≠ 0)
123 elnnne0 12567 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
12494, 122, 123sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ)
125 fourierdlem104.j . . . . . . . . . . . . . . . . 17 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12611leidd 11856 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑑)
12712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → π ∈ ℝ)
12810, 127, 105ltled 11438 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → 𝑑 ≤ π)
129128adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≤ π)
13011, 13, 11, 126, 129eliccd 45422 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ (𝑑[,]π))
13111, 13, 13, 129, 60eliccd 45422 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ (𝑑[,]π))
132130, 131jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)))
133 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
134133, 69prss 4845 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)) ↔ {𝑑, π} ⊆ (𝑑[,]π))
135132, 134sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ (𝑑[,]π))
136 inss2 4259 . . . . . . . . . . . . . . . . . . . . 21 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π)
137136a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π))
138 ioossicc 13493 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)π) ⊆ (𝑑[,]π)
139137, 138sstrdi 4021 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑[,]π))
140135, 139unssd 4215 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ (𝑑[,]π))
14173, 140eqsstrid 4057 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ (𝑑[,]π))
142133prid1 4787 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ {𝑑, π}
143 elun1 4205 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑑, π} → 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
144142, 143ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
145144, 73eleqtrri 2843 . . . . . . . . . . . . . . . . . 18 𝑑𝑇
146145a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑇)
14774a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ 𝑇)
148112, 68, 125, 11, 13, 141, 146, 147fourierdlem52 46079 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ((𝐽:(0...𝑁)⟶(𝑑[,]π) ∧ (𝐽‘0) = 𝑑) ∧ (𝐽𝑁) = π))
149148simplld 767 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
150148simplrd 769 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽‘0) = 𝑑)
151148simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽𝑁) = π)
152 elfzoelz 13716 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
153152zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
155154ltp1d 12225 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15610, 127jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → (𝑑 ∈ ℝ ∧ π ∈ ℝ))
157133, 69prss 4845 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) ↔ {𝑑, π} ⊆ ℝ)
158156, 157sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → {𝑑, π} ⊆ ℝ)
159158adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ ℝ)
160 ioossre 13468 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑(,)π) ⊆ ℝ
161136, 160sstri 4018 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ)
163159, 162unssd 4215 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ ℝ)
16473, 163eqsstrid 4057 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ ℝ)
165112, 164, 125, 68fourierdlem36 46064 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
166165adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
167 elfzofz 13732 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
168167adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
169 fzofzp1 13814 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
170169adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
171 isorel 7362 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
172166, 168, 170, 171syl12anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
173155, 172mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17442adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
175174, 62feqresmpt 6991 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)) = (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)))
17662sselda 4008 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
17714, 15, 27, 38, 39fourierdlem9 46037 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
178177ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐻:(-π[,]π)⟶ℝ)
179178, 176ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) ∈ ℝ)
18040fourierdlem43 46071 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
181180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 176ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) ∈ ℝ)
183179, 182remulcld 11320 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18441fvmpt2 7040 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
185176, 183, 184syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
186 0red 11293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 ∈ ℝ)
18710adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ)
18812a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ)
189 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (𝑑[,]π))
190 eliccre 45423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
191187, 188, 189, 190syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
19256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑑)
193187rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ*)
19454a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ*)
195 iccgelb 13463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
196193, 194, 189, 195syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
197186, 187, 191, 192, 196ltletrd 11450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
198197gt0ne0d 11854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
199198adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
200199neneqd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
201200iffalsed 4559 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
202197adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
203202iftrued 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
204203oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
205204oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
206201, 205eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
20714ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐹:ℝ⟶ℝ)
20815ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑋 ∈ ℝ)
209 iccssre 13489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21047, 12, 209mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
211210, 176sselid 4006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
212208, 211readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
213207, 212ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21427ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑌 ∈ ℝ)
215213, 214resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℝ)
216215, 211, 199redivcld 12122 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ ℝ)
217206, 216eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
21839fvmpt2 7040 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
219176, 217, 218syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
220219, 201, 2053eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
221188renegcld 11717 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ∈ ℝ)
22251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 0)
223221, 186, 191, 222, 197lttrd 11451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 𝑠)
224221, 191, 223ltled 11438 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ≤ 𝑠)
225 iccleub 13462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
226193, 194, 189, 225syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
227221, 188, 191, 224, 226eliccd 45422 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
228198neneqd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
229228iffalsed 4559 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
230100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℝ)
231191rehalfcld 12540 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℝ)
232231resincld 16191 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℝ)
233230, 232remulcld 11320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
234 2cnd 12371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
235191recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
236235halfcld 12538 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
237236sincld 16178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
238 2ne0 12397 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ≠ 0)
240 fourierdlem44 46072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
241227, 198, 240syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ≠ 0)
242234, 237, 239, 241mulne0d 11942 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
243191, 233, 242redivcld 12122 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
244229, 243eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
24540fvmpt2 7040 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
246227, 244, 245syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
247246adantll 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
248220, 247oveq12d 7466 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
249200iffalsed 4559 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
250249oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
251185, 248, 2503eqtrd 2784 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252251mpteq2dva 5266 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25365, 175, 2523eqtrd 2784 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
254253adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255254reseq1d 6008 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
25614adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
25715adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
258 fourierdlem104.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
259 fourierdlem104.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
260259adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑀 ∈ ℕ)
261 fourierdlem104.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
262261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑉 ∈ (𝑃𝑀))
263 fourierdlem104.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
264263adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
265 fourierdlem104.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
266265adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
267 fourierdlem104.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
268267adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
269105adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 < π)
27050, 10ltnled 11437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → (0 < 𝑑 ↔ ¬ 𝑑 ≤ 0))
27156, 270mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → ¬ 𝑑 ≤ 0)
272271intn3an2d 1480 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → ¬ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π))
273 elicc2 13472 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
27410, 12, 273sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
275272, 274mtbird 325 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → ¬ 0 ∈ (𝑑[,]π))
276275adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ¬ 0 ∈ (𝑑[,]π))
27727adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑌 ∈ ℝ)
278 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
279 eqid 2740 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
280 eqid 2740 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
281 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
282 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
283282fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
284281, 283oveq12d 7466 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
285284sseq2d 4041 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
286285cbvriotavw 7414 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
287256, 257, 258, 260, 262, 264, 266, 268, 11, 13, 269, 62, 276, 277, 278, 80, 73, 68, 125, 279, 280, 286fourierdlem86 46113 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
288287simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
289255, 288eqeltrd 2844 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
290287simplld 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
291254eqcomd 2746 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
292291reseq1d 6008 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
293292oveq1d 7463 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
294290, 293eleqtrd 2846 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295287simplrd 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
296292oveq1d 7463 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
297295, 296eleqtrd 2846 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
298 eqid 2740 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
29967adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(𝑑[,]π)⟶ℂ)
30011ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
30112a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → π ∈ ℝ)
302 elioore 13437 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
303302adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30462, 210sstrdi 4021 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ ℝ)
305304adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ ℝ)
306149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
307306, 168ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (𝑑[,]π))
308305, 307sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
309308adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31011adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
311310rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
31254a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ*)
313 iccgelb 13463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽𝑘) ∈ (𝑑[,]π)) → 𝑑 ≤ (𝐽𝑘))
314311, 312, 307, 313syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ≤ (𝐽𝑘))
315314adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ≤ (𝐽𝑘))
316309rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
317306, 170ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π))
318305, 317sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
319318rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
320319adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
321 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
322 ioogtlb 45413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
323316, 320, 321, 322syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
324300, 309, 303, 315, 323lelttrd 11448 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 < 𝑠)
325300, 303, 324ltled 11438 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑𝑠)
326318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
327 iooltub 45428 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
328316, 320, 321, 327syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
329 iccleub 13462 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π)) → (𝐽‘(𝑘 + 1)) ≤ π)
330311, 312, 317, 329syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ π)
331330adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ π)
332303, 326, 301, 328, 331ltletrd 11450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < π)
333303, 301, 332ltled 11438 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ≤ π)
334300, 301, 303, 325, 333eliccd 45422 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (𝑑[,]π))
335334ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
336 dfss3 3997 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
337335, 336sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
338299, 337feqresmpt 6991 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
339 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
340 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (0(,)π))
34164fveq1i 6921 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠)
342341a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠))
343 fvres 6939 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (𝑑[,]π) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
344343adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
345247, 249eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
346220, 345oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
347215recnd 11318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℂ)
348235adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
349 2cnd 12371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
350348halfcld 12538 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
351350sincld 16178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
352349, 351mulcld 11310 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
353242adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
354347, 348, 352, 199, 353dmdcan2d 12100 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
355185, 346, 3543eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
356342, 344, 3553eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
357339, 340, 334, 356syl21anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
358339, 340, 334, 354syl21anc 837 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
359358eqcomd 2746 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
360 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)))
361 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
362361fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
363362oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑌) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
364 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
365363, 364oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
366365adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
367 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
368 ovex 7481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V
369368a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V)
370360, 366, 367, 369fvmptd 7036 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
371 eqidd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
372 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
373372fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
374373oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
375364, 374oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
376375adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
377 ovex 7481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
378377a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
379371, 376, 367, 378fvmptd 7036 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380370, 379oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
381380eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
382381adantllr 718 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
383357, 359, 3823eqtrd 2784 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
384383mpteq2dva 5266 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
385338, 384eqtr2d 2781 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
386385oveq2d 7464 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
38743a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
388337, 305sstrd 4019 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
38921tgioo2 24844 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39021, 389dvres 25966 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(𝑑[,]π)⟶ℂ) ∧ ((𝑑[,]π) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
391387, 299, 305, 388, 390syl22anc 838 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
392 ioontr 45429 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
393392a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
394393reseq2d 6009 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
395386, 391, 3943eqtrrd 2785 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
39614ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
39715ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
398259ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
399261ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
400 fourierdlem104.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
401400ad4ant14 751 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40262adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ (-π[,]π))
403337, 402sstrd 4019 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
40453a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
405 0red 11293 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
40656ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < 𝑑)
407405, 310, 308, 406, 314ltletrd 11450 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < (𝐽𝑘))
408308, 319, 404, 407ltnelicc 45415 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
40927ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑌 ∈ ℝ)
41012a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
411269adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < π)
412 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
413 biid 261 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
414397, 258, 398, 399, 310, 410, 411, 402, 80, 73, 68, 125, 412, 286, 413fourierdlem50 46077 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
415414simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
416414simprd 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
417365cbvmptv 5279 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
418375cbvmptv 5279 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
420396, 397, 258, 398, 399, 401, 308, 318, 173, 403, 408, 409, 80, 415, 416, 417, 418, 419fourierdlem72 46099 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
421395, 420eqeltrd 2844 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
422 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
423 eqid 2740 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
424 fourierdlem104.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
425424, 415eqeltrid 2848 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
426 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
427426, 425jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
428 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
429428anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
430 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
431 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
432431fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
433430, 432oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
434 raleq 3331 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
435433, 434syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
436435rexbidv 3185 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
437429, 436imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
438 fourierdlem104.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
439437, 438vtoclg 3566 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440425, 427, 439sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
441 nfv 1913 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁))
442 nfra1 3290 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
443441, 442nfan 1898 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
44547a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
446445, 15readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
44712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
448447, 15readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
449446, 448iccssred 13494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
450 ressxr 11334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
451449, 450sstrdi 4021 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
452451ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
453258, 398, 399fourierdlem15 46043 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
454 elfzofz 13732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
455425, 454syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
456453, 455ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
457452, 456sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
458457adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
459 fzofzp1 13814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
460425, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
461453, 460ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462452, 461sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
463462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
464 elioore 13437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
465464adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
46647a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
467466, 410, 397, 258, 398, 399, 455, 80fourierdlem13 46041 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
468467simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
469468adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
470449ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
471470, 456sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
472471adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
473469, 472eqeltrrd 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
474397, 308readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
475474adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
476467simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
477471, 397resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
478476, 477eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
479466, 410, 397, 258, 398, 399, 460, 80fourierdlem13 46041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
480479simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
481470, 461sseldd 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
482481, 397resubcld 11718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
483480, 482eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
484424eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
485484fveq2i 6923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
486484oveq1i 7458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
487486fveq2i 6923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
488485, 487oveq12i 7460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
489416, 488sseqtrdi 4059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
490478, 483, 308, 318, 173, 489fourierdlem10 46038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
491490simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
492478, 308, 397, 491leadd2dd 11905 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
493492adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
494475rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
495397, 318readdcld 11319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
496495rexrd 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
497496adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
498 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
499 ioogtlb 45413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
500494, 497, 498, 499syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
501473, 475, 465, 493, 500lelttrd 11448 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
502469, 501eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
503495adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
504479simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
505504, 481eqeltrrd 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
506505adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
507 iooltub 45428 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
508494, 497, 498, 507syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
509490simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
510318, 483, 397, 509leadd2dd 11905 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
511510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
512465, 503, 506, 508, 511ltletrd 11450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
513504eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
514513adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
515512, 514breqtrd 5192 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
516458, 463, 465, 502, 515eliood 45416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
517516adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
518 rspa 3254 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
519444, 517, 518syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
520519ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
521443, 520ralrimi 3263 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
522521ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
523522reximdv 3176 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
524440, 523mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
525433raleqdv 3334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
526525rexbidv 3185 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
527429, 526imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
528 fourierdlem104.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
529527, 528vtoclg 3566 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
530425, 427, 529sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
531 nfra1 3290 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
532441, 531nfan 1898 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53314, 44fssd 6764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
534 ssid 4031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
535534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
536 ioossre 13468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
537536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
53821, 389dvres 25966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
53944, 533, 535, 537, 538syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
540 ioontr 45429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
541540reseq2i 6006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
542539, 541eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
543542fveq1d 6922 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
544 fvres 6939 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
545543, 544sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
546545ad4ant14 751 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
547546fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
548547adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
549 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
550516adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
551 rspa 3254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
552549, 550, 551syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
553548, 552eqbrtrd 5188 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
554553ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
555532, 554ralrimi 3263 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
556555ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
557556reximdv 3176 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
558530, 557mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
559311, 312, 306, 412fourierdlem8 46036 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
560124ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
561149, 304fssd 6764 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶ℝ)
562561ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
563 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ (𝑑[,]π))
564150eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 = (𝐽‘0))
565151eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → π = (𝐽𝑁))
566564, 565oveq12d 7466 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
567566adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
568563, 567eleqtrd 2846 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
569568adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
570 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
571 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
572571breq1d 5176 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
573572cbvrabv 3454 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
574573supeq1i 9516 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
575560, 562, 569, 570, 574fourierdlem25 46053 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
576533ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
577534a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
578536a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
579387, 576, 577, 578, 538syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
580516ralrimiva 3152 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
581 dfss3 3997 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
582580, 581sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
583 resabs2 6038 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584582, 583syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
585541, 579, 5843eqtr4a 2806 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
586582resabs1d 6037 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
587586eqcomd 2746 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
588585, 584, 5873eqtrrd 2785 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
589433reseq2d 6009 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
590589, 433feq12d 6735 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
591429, 590imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
592 cncff 24938 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
593400, 592syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
594591, 593vtoclg 3566 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
595594anabsi7 670 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
596427, 595syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
597596, 582fssresd 6788 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
598588, 597feq1dd 45074 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
599363, 374oveq12d 7466 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
600599cbvmptv 5279 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
601 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
602601fveq2d 6924 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
603602breq1d 5176 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
604603cbvralvw 3243 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
605604anbi2i 622 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
606 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
607606fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
608607breq1d 5176 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
609608cbvralvw 3243 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
610605, 609anbi12i 627 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
611256, 257, 11, 13, 62, 276, 277, 422, 423, 524, 558, 149, 173, 559, 575, 598, 600, 610fourierdlem80 46107 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
612354mpteq2dva 5266 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
613253, 612eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
614613oveq2d 7464 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
615614dmeqd 5930 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
616 nfcv 2908 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
617 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
618 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
619 nfmpt1 5274 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
620617, 618, 619nfov 7478 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
621620nfdm 5976 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
622616, 621raleqf 3361 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
623615, 622syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
624614fveq1d 6922 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
625624fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
626625breq1d 5176 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
627626ralbidv 3184 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
628623, 627bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
629628rexbidv 3185 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
630611, 629mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
631 eqid 2740 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
632 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
633 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
634 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
635634fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
636633, 635oveq12d 7466 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
637636sseq2d 4041 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
638637cbvriotavw 7414 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
639638fveq2i 6923 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
640639eqeq2i 2753 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
641640a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
642 csbeq1 3924 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
643638, 642mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
644641, 643ifbieq1d 4572 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
645644mptru 1544 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
646645oveq1i 7458 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌)
647646oveq1i 7458 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘))
648647oveq1i 7458 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
649648a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
650 eqeq1 2744 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
651638oveq1i 7458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
652651fveq2i 6923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
653652eqeq2i 2753 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
654653a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
655 csbeq1 3924 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
656638, 655mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
657654, 656ifbieq1d 4572 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
658657mptru 1544 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
659658oveq1i 7458 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌)
660659oveq1i 7458 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1)))
661660oveq1i 7458 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
662661a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
663 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
664650, 662, 663ifbieq12d 4576 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
665632, 649, 664ifbieq12d 4576 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
666665cbvmptv 5279 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
66711, 13, 67, 124, 149, 150, 151, 173, 289, 294, 297, 298, 421, 630, 631, 666fourierdlem73 46100 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
668 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
669668rexralbidv 3229 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
670669cbvralvw 3243 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
671667, 670sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
672671adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
673 rphalfcl 13084 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
674673ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (𝑒 / 2) ∈ ℝ+)
675 breq2 5170 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
676675rexralbidv 3229 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
677676rspccva 3634 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
678672, 674, 677syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
679138a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑(,)π) ⊆ (𝑑[,]π))
680679sselda 4008 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (𝑑[,]π))
681680, 343syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
682341, 681eqtr2id 2793 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → (𝑈𝑠) = (𝑂𝑠))
683682oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
684683itgeq2dv 25837 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
685684adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
686685fveq2d 6924 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
687 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688686, 687eqbrtrd 5188 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
689688ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
690689adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
691690ralimdv 3175 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
692691reximdv 3176 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
693678, 692mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
694693adantr 480 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
695 nfv 1913 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π))
696 nfra1 3290 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
697695, 696nfan 1898 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
698 nfv 1913 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
699697, 698nfan 1898 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
700 nfv 1913 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
701699, 700nfan 1898 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
702 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)))
703 eluznn 12983 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
704703adantll 713 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
705702, 704jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
706705adantllr 718 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
707 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708703adantll 713 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
709 rspa 3254 . . . . . . . . . . . . . . . . . 18 ((∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
710707, 708, 709syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
711706, 710jca 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
712711adantlr 714 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
713 nnre 12300 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
714713rexrd 11340 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
715714adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
71622a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
717 eluzelre 12914 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
718 halfre 12507 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ
719718a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
720717, 719readdcld 11319 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
721720adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
722713adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
723717adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
724 eluzle 12916 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
725724adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
726 halfgt0 12509 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
727726a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
728718a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
729728, 723ltaddposd 11874 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
730727, 729mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
731722, 723, 721, 725, 730lelttrd 11448 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
732721ltpnfd 13184 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
733715, 716, 721, 731, 732eliood 45416 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
734733adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
735 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
736 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
737736fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
738737oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
739738adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
740739itgeq2dv 25837 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
741740fveq2d 6924 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
742741breq1d 5176 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
743742rspcv 3631 . . . . . . . . . . . . . . . . 17 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
744734, 735, 743sylc 65 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
745744adantlll 717 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
746 fourierdlem104.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
747712, 745, 746sylanbrc 582 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
748 0red 11293 . . . . . . . . . . . . . . . . 17 (𝜒 → 0 ∈ ℝ)
74912a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → π ∈ ℝ)
750 ioossicc 13493 . . . . . . . . . . . . . . . . . 18 (0(,)π) ⊆ (0[,]π)
751746biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
752 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (0(,)π))
753751, 752syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (0(,)π))
754750, 753sselid 4006 . . . . . . . . . . . . . . . . 17 (𝜒𝑑 ∈ (0[,]π))
755 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
756751, 755syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
75742adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
75847rexri 11348 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ*
759 0re 11292 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
76047, 759, 51ltleii 11413 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ≤ 0
761 iooss1 13442 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ* ∧ -π ≤ 0) → (0(,)π) ⊆ (-π(,)π))
762758, 760, 761mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (0(,)π) ⊆ (-π(,)π)
763 ioossicc 13493 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π[,]π)
764762, 763sstri 4018 . . . . . . . . . . . . . . . . . . . . . . 23 (0(,)π) ⊆ (-π[,]π)
765764sseli 4004 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (-π[,]π))
766765adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
767757, 766ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
768756, 767sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
769 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
770751, 769syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℕ)
771770nnred 12308 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑘 ∈ ℝ)
772718a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (1 / 2) ∈ ℝ)
773771, 772readdcld 11319 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
774773adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → (𝑘 + (1 / 2)) ∈ ℝ)
775 elioore 13437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
776775adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
777774, 776remulcld 11320 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
778777resincld 16191 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
779768, 778remulcld 11320 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
780779recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
78153a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ∈ ℝ*)
78254a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ∈ ℝ*)
783748leidd 11856 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 0)
784 ioossre 13468 . . . . . . . . . . . . . . . . . . . . 21 (0(,)π) ⊆ ℝ
785784, 753sselid 4006 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ∈ ℝ)
786781, 782, 753, 104syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 < π)
787785, 749, 786ltled 11438 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ≤ π)
788 ioossioo 13501 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ π)) → (0(,)𝑑) ⊆ (0(,)π))
789781, 782, 783, 787, 788syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ⊆ (0(,)π))
790 ioombl 25619 . . . . . . . . . . . . . . . . . . 19 (0(,)𝑑) ∈ dom vol
791790a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ∈ dom vol)
792 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
793792anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
794 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → 𝑛 = 𝑘)
795794oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
796795oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
797796fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
798797oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
799798mpteq2dva 5266 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
800799eleq1d 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
801793, 800imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
802764a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
803 ioombl 25619 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)π) ∈ dom vol
804803a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
80542ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
806805adantlr 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
807 nnre 12300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
808 readdcl 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
809807, 718, 808sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
810809adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
811 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
812210, 811sselid 4006 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
813810, 812remulcld 11320 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
814813resincld 16191 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
815814adantll 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
816806, 815remulcld 11320 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
817 fourierdlem104.g . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
818 fourierdlem104.s . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
819818fvmpt2 7040 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
820811, 814, 819syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
821820adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
822821oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
823822mpteq2dva 5266 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
824817, 823eqtr2id 2793 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
82514adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
826 fourierdlem104.x . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ ran 𝑉)
827826adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
82826adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
82937adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
830807adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
831259adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
832261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
833263adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
834265adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
835267adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
836 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
837 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D 𝐹) = (ℝ D 𝐹)
838593adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
839 fourierdlem104.a . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
840839adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
841 fourierdlem104.b . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
842841adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
843258, 825, 827, 828, 829, 39, 40, 41, 830, 818, 817, 831, 832, 833, 834, 835, 80, 836, 837, 838, 840, 842fourierdlem88 46115 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
844824, 843eqeltrd 2844 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
845802, 804, 816, 844iblss 25860 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
846801, 845chvarvv 1998 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
847756, 770, 846syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
848789, 791, 779, 847iblss 25860 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (0(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
849781, 782, 753, 55syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 < 𝑑)
850748, 785, 849ltled 11438 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 𝑑)
851749leidd 11856 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ≤ π)
852 ioossioo 13501 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 𝑑 ∧ π ≤ π)) → (𝑑(,)π) ⊆ (0(,)π))
853781, 782, 850, 851, 852syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ⊆ (0(,)π))
854 ioombl 25619 . . . . . . . . . . . . . . . . . . 19 (𝑑(,)π) ∈ dom vol
855854a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ∈ dom vol)
856853, 855, 779, 847iblss 25860 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (𝑑(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
857748, 749, 754, 780, 848, 856itgsplitioo 25893 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
858857fveq2d 6924 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
859789sselda 4008 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)𝑑)) → 𝑠 ∈ (0(,)π))
860859, 779syldan 590 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
861860, 848itgcl 25839 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
862853sselda 4008 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (0(,)π))
863862, 779syldan 590 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
864863, 856itgcl 25839 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
865861, 864addcld 11309 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
866865abscld 15485 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
867861abscld 15485 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
868864abscld 15485 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
869867, 868readdcld 11319 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
870 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
871751, 870syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
872871rpred 13099 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
873861, 864abstrid 15505 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
874751simplrd 769 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
875751simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
876867, 868, 872, 874, 875lt2halvesd 12541 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
877866, 869, 872, 873, 876lelttrd 11448 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
878858, 877eqbrtrd 5188 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
879747, 878syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
880879ex 412 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
881701, 880ralrimi 3263 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
882881ex 412 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
883882reximdva 3174 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
884694, 883mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
885 pipos 26520 . . . . . . . . . . . . . 14 0 < π
88647, 759, 12lttri 11416 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
88751, 885, 886mp2an 691 . . . . . . . . . . . . 13 -π < π
88847, 12, 887ltleii 11413 . . . . . . . . . . . 12 -π ≤ π
889888a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
890258fourierdlem2 46030 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
891259, 890syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
892261, 891mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
893892simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
894 elmapi 8907 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
895893, 894syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
896895ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
89715adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
898896, 897resubcld 11718 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
899898, 80fmptd 7148 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
90080a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
901 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
902901oveq1d 7463 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
903902adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
904259nnnn0d 12613 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
905 nn0uz 12945 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
906904, 905eleqtrdi 2854 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
907 eluzfz1 13591 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
908906, 907syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
909895, 908ffvelcdmd 7119 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
910909, 15resubcld 11718 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
911900, 903, 908, 910fvmptd 7036 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
912892simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
913912simplld 767 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
914913oveq1d 7463 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
915445recnd 11318 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
91615recnd 11318 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
917915, 916pncand 11648 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
918911, 914, 9173eqtrd 2784 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
919445, 447, 15, 258, 836, 259, 261, 80fourierdlem14 46042 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
920836fourierdlem2 46030 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
921259, 920syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
922919, 921mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
923922simprd 495 . . . . . . . . . . . 12 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
924923simplrd 769 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
925923simprd 495 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
926925r19.21bi 3257 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
92714adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
928836, 259, 919fourierdlem15 46043 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
929928adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
930 elfzofz 13732 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
931930adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
932929, 931ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
933 fzofzp1 13814 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
934933adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
935929, 934ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
93615adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
937 ffn 6747 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
938893, 894, 9373syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
939 fvelrnb 6982 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
940938, 939syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
941826, 940mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
942 oveq1 7455 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
943942adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
944916subidd 11635 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
945944ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
946943, 945eqtr2d 2781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
947946ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
948947reximdva 3174 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
949941, 948mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
95080elrnmpt 5981 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
951759, 950ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
952949, 951sylibr 234 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
953836, 259, 919, 952fourierdlem12 46040 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
954895adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
955954, 931ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
956955, 936resubcld 11718 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
95780fvmpt2 7040 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
958931, 956, 957syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
959958oveq1d 7463 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
960955recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
961916adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
962960, 961npcand 11651 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
963959, 962eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
964 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
965964oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
966965cbvmptv 5279 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
96780, 966eqtr4i 2771 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
968967a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
969 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
970969oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
971970adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
972954, 934ffvelcdmd 7119 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
973972, 936resubcld 11718 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
974968, 971, 934, 973fvmptd 7036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
975974oveq1d 7463 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
976972recnd 11318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
977976, 961npcand 11651 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
978975, 977eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
979963, 978oveq12d 7466 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
980979reseq2d 6009 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
981979oveq1d 7463 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
982263, 980, 9813eltr4d 2859 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
98327adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
98438adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
985927, 932, 935, 936, 953, 982, 983, 984, 39fourierdlem40 46068 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
986 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
98743a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
988986, 987fssd 6764 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
989400, 592, 9883syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
990 eqid 2740 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
99115, 258, 14, 826, 26, 38, 39, 259, 261, 265, 80, 836, 837, 989, 841, 990fourierdlem75 46102 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
992 eqid 2740 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
99315, 258, 14, 826, 27, 37, 39, 259, 261, 267, 80, 836, 837, 593, 839, 992fourierdlem74 46101 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
994 fveq2 6920 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
995 oveq1 7455 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
996995fveq2d 6924 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
997994, 996oveq12d 7466 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
998997cbvmptv 5279 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
999445, 447, 889, 177, 259, 899, 918, 924, 926, 985, 991, 993, 998fourierdlem70 46097 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1000 eqid 2740 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1001 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10021001fveq2d 6924 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10031002breq1d 5176 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10041003cbvralvw 3243 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10051004ralbii 3099 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
100610053anbi3i 1159 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10071006anbi1i 623 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10081007anbi1i 623 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10091008anbi1i 623 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
101014, 15, 27, 38, 39, 40, 41, 818, 817, 999, 843, 1000, 1009fourierdlem87 46114 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1011 iftrue 4554 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10121011adantl 481 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
101353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
101454a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ*)
1015 rpre 13065 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10161015adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
1017 rpgt0 13069 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10181017adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < 𝑐)
101912rehalfcli 12542 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
10201019a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
102112a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1022 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1023 halfpos 12523 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
102412, 1023ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 < π ↔ (π / 2) < π)
1025885, 1024mpbi 230 . . . . . . . . . . . . . . . . 17 (π / 2) < π
10261025a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10271016, 1020, 1021, 1022, 1026lelttrd 11448 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10281013, 1014, 1016, 1018, 1027eliood 45416 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ (0(,)π))
10291012, 1028eqeltrd 2844 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1030 iffalse 4557 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
1031 2pos 12396 . . . . . . . . . . . . . . . . . 18 0 < 2
103212, 100, 885, 1031divgt0ii 12212 . . . . . . . . . . . . . . . . 17 0 < (π / 2)
1033 elioo2 13448 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π)))
103453, 54, 1033mp2an 691 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π))
10351019, 1032, 1025, 1034mpbir3an 1341 . . . . . . . . . . . . . . . 16 (π / 2) ∈ (0(,)π)
10361035a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → (π / 2) ∈ (0(,)π))
10371030, 1036eqeltrd 2844 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10381037adantl 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10391029, 1038pm2.61dan 812 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
104010393ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1041 ioombl 25619 . . . . . . . . . . . . . . 15 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol
10421041a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol)
1043 simpr 484 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10441042, 1043jca 511 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1045 ioossicc 13493 . . . . . . . . . . . . . . . 16 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
104647a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
104712a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
1048760a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ 0)
1049784, 1039sselid 4006 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
10501019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
1051 min2 13252 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10521015, 1019, 1051sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10531025a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) < π)
10541049, 1050, 1047, 1052, 1053lelttrd 11448 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) < π)
10551049, 1047, 1054ltled 11438 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)
1056 iccss 13475 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)) → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10571046, 1047, 1048, 1055, 1056syl22anc 838 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10581045, 1057sstrid 4020 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
1059 0red 11293 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
10601018, 1012breqtrrd 5194 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10611032, 1030breqtrrid 5204 . . . . . . . . . . . . . . . . . . . . 21 𝑐 ≤ (π / 2) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10621061adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10631060, 1062pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10641059, 1049, 1063ltled 11438 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1065 volioo 25623 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10661059, 1049, 1064, 1065syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10671049recnd 11318 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
10681067subid1d 11636 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10691066, 1068eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1070 min1 13251 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10711015, 1019, 1070sylancl 585 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10721069, 1071eqbrtrd 5188 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)
10731058, 1072jca 511 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10741073adantr 480 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
1075 sseq1 4034 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (𝑢 ⊆ (-π[,]π) ↔ (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π)))
1076 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘𝑢) = (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))))
10771076breq1d 5176 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10781075, 1077anbi12d 631 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)))
1079 itgeq1 25828 . . . . . . . . . . . . . . . . . 18 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10801079fveq2d 6924 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10811080breq1d 5176 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10821081ralbidv 3184 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10831078, 1082imbi12d 344 . . . . . . . . . . . . . 14 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
10841083rspcva 3633 . . . . . . . . . . . . 13 (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10851044, 1074, 1084sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
108610853adant1 1130 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1087 oveq2 7456 . . . . . . . . . . . . . . . 16 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (0(,)𝑑) = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
10881087itgeq1d 45878 . . . . . . . . . . . . . . 15 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10891088fveq2d 6924 . . . . . . . . . . . . . 14 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10901089breq1d 5176 . . . . . . . . . . . . 13 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10911090ralbidv 3184 . . . . . . . . . . . 12 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10921091rspcev 3635 . . . . . . . . . . 11 ((if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10931040, 1086, 1092syl2anc 583 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10941093rexlimdv3a 3165 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10951010, 1094mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1096884, 1095r19.29a 3168 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
10971096ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1098 nnex 12299 . . . . . . . . 9 ℕ ∈ V
10991098mptex 7260 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V
11001099a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V)
1101 eqidd 2741 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠))
1102765adantl 481 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1103767ad4ant14 751 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1104765adantl 481 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1105 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1106 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11071105, 1106eqeltrd 2844 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11081107nnred 12308 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1109718a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11101108, 1109readdcld 11319 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11111110adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1112210, 1104sselid 4006 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11131111, 1112remulcld 11320 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11141113resincld 16191 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11151104, 1114, 819syl2anc 583 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11161115adantlll 717 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11171108adantll 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11181117adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑛 ∈ ℝ)
1119 1red 11291 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 1 ∈ ℝ)
11201119rehalfcld 12540 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (1 / 2) ∈ ℝ)
11211118, 1120readdcld 11319 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1122210, 1102sselid 4006 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11231121, 1122remulcld 11320 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11241123resincld 16191 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11251116, 1124eqeltrd 2844 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) ∈ ℝ)
11261103, 1125remulcld 11320 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1127817fvmpt2 7040 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11281102, 1126, 1127syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1129 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11301129oveq1d 7463 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11311130fveq2d 6924 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11321131ad2antlr 726 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11331116, 1132eqtrd 2780 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11341133oveq2d 7464 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11351128, 1134eqtrd 2780 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11361135itgeq2dv 25837 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1137 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1138798itgeq2dv 25837 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11391138eleq1d 2829 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1140793, 1139imbi12d 344 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1141767adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1142 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11431142, 765, 814syl2an 595 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11441141, 1143remulcld 11320 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11451144, 845itgcl 25839 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11461140, 1145chvarvv 1998 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11471101, 1136, 1137, 1146fvmptd 7036 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑘) = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11489, 2, 1100, 1147, 1146clim0c 15553 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
11491097, 1148mpbird 257 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0)
11501098mptex 7260 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π)) ∈ V
11516, 1150eqeltri 2840 . . . . . 6 𝐸 ∈ V
11521151a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
11531098mptex 7260 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
11541153a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
115512recni 11304 . . . . . . 7 π ∈ ℂ
11561155a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1157 eqidd 2741 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1158 eqidd 2741 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1159 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
116012a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
11611157, 1158, 1159, 1160fvmptd 7036 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11621161adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11639, 2, 1154, 1156, 1162climconst 15589 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1164759, 885gtneii 11402 . . . . . 6 π ≠ 0
11651164a1i 11 . . . . 5 (𝜑 → π ≠ 0)
116615adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
116727adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
116838adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1169825, 1166, 1167, 1168, 39, 40, 41, 830, 818, 817fourierdlem67 46094 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
11701169adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝐺:(-π[,]π)⟶ℝ)
1171802sselda 4008 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
11721170, 1171ffvelcdmd 7119 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) ∈ ℝ)
11731169ffvelcdmda 7118 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
11741169feqmptd 6990 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
11751174, 843eqeltrrd 2845 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1176802, 804, 1173, 1175iblss 25860 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ (𝐺𝑠)) ∈ 𝐿1)
11771172, 1176itgcl 25839 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ)
1178 eqid 2740 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
11791178fvmpt2 7040 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11801142, 1177, 1179syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11811180, 1177eqeltrd 2844 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1182 eqid 2740 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
11831182fvmpt2 7040 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
118412, 1183mpan2 690 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
11851155a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ∈ ℂ)
11861164a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ≠ 0)
1187 eldifsn 4811 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
11881185, 1186, 1187sylanbrc 582 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
11891184, 1188eqeltrd 2844 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11901189adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11911155a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
11921164a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
11931177, 1191, 1192divcld 12070 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
11946fvmpt2 7040 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11951142, 1193, 1194syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11961180eqcomd 2746 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛))
11971184eqcomd 2746 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11981197adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11991196, 1198oveq12d 7466 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12001195, 1199eqtrd 2780 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12013, 4, 5, 8, 9, 2, 1149, 1152, 1163, 1165, 1181, 1190, 1200climdivf 45533 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12021155, 1164div0i 12028 . . . . 5 (0 / π) = 0
12031202a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12041201, 1203breqtrd 5192 . . 3 (𝜑𝐸 ⇝ 0)
1205 fourierdlem104.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12061098mptex 7260 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12071205, 1206eqeltri 2840 . . . 4 𝑍 ∈ V
12081207a1i 11 . . 3 (𝜑𝑍 ∈ V)
12091098mptex 7260 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V
12101209a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V)
1211 limccl 25930 . . . . . 6 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
12121211, 26sselid 4006 . . . . 5 (𝜑𝑌 ∈ ℂ)
12131212halfcld 12538 . . . 4 (𝜑 → (𝑌 / 2) ∈ ℂ)
1214 eqidd 2741 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) = (𝑚 ∈ ℕ ↦ (𝑌 / 2)))
1215 eqidd 2741 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑌 / 2) = (𝑌 / 2))
12169eqcomi 2749 . . . . . . . 8 (ℤ‘1) = ℕ
12171216eleq2i 2836 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12181217biimpi 216 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12191218adantl 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12201213adantr 480 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑌 / 2) ∈ ℂ)
12211214, 1215, 1219, 1220fvmptd 7036 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) = (𝑌 / 2))
12221, 2, 1210, 1213, 1221climconst 15589 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ⇝ (𝑌 / 2))
12231193, 6fmptd 7148 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12241223adantr 480 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12251224, 1219ffvelcdmd 7119 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12261221, 1220eqeltrd 2844 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) ∈ ℂ)
12271221oveq2d 7464 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑌 / 2)))
1228803a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
1229 0red 11293 . . . . . . . . . . . . . 14 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ)
12301229rexrd 11340 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ*)
123154a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → π ∈ ℝ*)
1232 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (0(,)π))
1233 ioogtlb 45413 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12341230, 1231, 1232, 1233syl3anc 1371 . . . . . . . . . . . 12 (𝑠 ∈ (0(,)π) → 0 < 𝑠)
12351234gt0ne0d 11854 . . . . . . . . . . 11 (𝑠 ∈ (0(,)π) → 𝑠 ≠ 0)
12361235neneqd 2951 . . . . . . . . . 10 (𝑠 ∈ (0(,)π) → ¬ 𝑠 = 0)
1237 velsn 4664 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12381236, 1237sylnibr 329 . . . . . . . . 9 (𝑠 ∈ (0(,)π) → ¬ 𝑠 ∈ {0})
1239765, 1238eldifd 3987 . . . . . . . 8 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12401239ssriv 4012 . . . . . . 7 (0(,)π) ⊆ ((-π[,]π) ∖ {0})
12411240a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ((-π[,]π) ∖ {0}))
1242 fourierdlem104.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
12431234adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12441243iftrued 4556 . . . . . 6 ((𝜑𝑠 ∈ (0(,)π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
1245 eqid 2740 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
1246 0red 11293 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
124712a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
1248759, 12, 885ltleii 11413 . . . . . . . . 9 0 ≤ π
12491248a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
1250 eqid 2740 . . . . . . . 8 (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
12511242, 1142, 1245, 1246, 1247, 1249, 1250dirkeritg 46023 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)))
1252 ubicc2 13525 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
125353, 54, 1248, 1252mp3an 1461 . . . . . . . . . 10 π ∈ (0[,]π)
1254 oveq1 7455 . . . . . . . . . . . . 13 (𝑠 = π → (𝑠 / 2) = (π / 2))
1255 oveq2 7456 . . . . . . . . . . . . . . . . . 18 (𝑠 = π → (𝑘 · 𝑠) = (𝑘 · π))
12561255fveq2d 6924 . . . . . . . . . . . . . . . . 17 (𝑠 = π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · π)))
12571256oveq1d 7463 . . . . . . . . . . . . . . . 16 (𝑠 = π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · π)) / 𝑘))
1258 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
12591258zcnd 12748 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
12601155a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
12611164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ≠ 0)
12621259, 1260, 1261divcan4d 12076 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) = 𝑘)
12631262, 1258eqeltrd 2844 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) ∈ ℤ)
12641259, 1260mulcld 11310 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · π) ∈ ℂ)
1265 sineq0 26584 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 · π) ∈ ℂ → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12661264, 1265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12671263, 1266mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · π)) = 0)
12681267oveq1d 7463 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = (0 / 𝑘))
1269 0red 11293 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1270 1red 11291 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
12711258zred 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
127298a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 < 1)
1273 elfzle1 13587 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
12741269, 1270, 1271, 1272, 1273ltletrd 11450 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
12751274gt0ne0d 11854 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
12761259, 1275div0d 12069 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
12771268, 1276eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = 0)
12781257, 1277sylan9eq 2800 . . . . . . . . . . . . . . 15 ((𝑠 = π ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12791278sumeq2dv 15750 . . . . . . . . . . . . . 14 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1280 fzfi 14023 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
12811280olci 865 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1282 sumz 15770 . . . . . . . . . . . . . . 15 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
12831281, 1282ax-mp 5 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)0 = 0
12841279, 1283eqtrdi 2796 . . . . . . . . . . . . 13 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12851254, 1284oveq12d 7466 . . . . . . . . . . . 12 (𝑠 = π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((π / 2) + 0))
12861285oveq1d 7463 . . . . . . . . . . 11 (𝑠 = π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((π / 2) + 0) / π))
1287 ovex 7481 . . . . . . . . . . 11 (((π / 2) + 0) / π) ∈ V
12881286, 1250, 1287fvmpt 7029 . . . . . . . . . 10 (π ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π))
12891253, 1288ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π)
1290 lbicc2 13524 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
129153, 54, 1248, 1290mp3an 1461 . . . . . . . . . 10 0 ∈ (0[,]π)
1292 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1293 2cn 12368 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
12941293, 238div0i 12028 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
12951292, 1294eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1296 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
12971259mul01d 11489 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
12981296, 1297sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
12991298fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1300 sin0 16197 . . . . . . . . . . . . . . . . . . . 20 (sin‘0) = 0
13011299, 1300eqtrdi 2796 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13021301oveq1d 7463 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
13031276adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13041302, 1303eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13051304sumeq2dv 15750 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
13061305, 1283eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13071295, 1306oveq12d 7466 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1308 00id 11465 . . . . . . . . . . . . . 14 (0 + 0) = 0
13091307, 1308eqtrdi 2796 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13101309oveq1d 7463 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13111310, 1202eqtrdi 2796 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1312 c0ex 11284 . . . . . . . . . . 11 0 ∈ V
13131311, 1250, 1312fvmpt 7029 . . . . . . . . . 10 (0 ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13141291, 1313ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
13151289, 1314oveq12i 7460 . . . . . . . 8 (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0)
13161315a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0))
13171019recni 11304 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
13181317addridi 11477 . . . . . . . . . . . 12 ((π / 2) + 0) = (π / 2)
13191318oveq1i 7458 . . . . . . . . . . 11 (((π / 2) + 0) / π) = ((π / 2) / π)
13201155, 1293, 1155, 238, 1164divdiv32i 12049 . . . . . . . . . . 11 ((π / 2) / π) = ((π / π) / 2)
13211155, 1164dividi 12027 . . . . . . . . . . . 12 (π / π) = 1
13221321oveq1i 7458 . . . . . . . . . . 11 ((π / π) / 2) = (1 / 2)
13231319, 1320, 13223eqtri 2772 . . . . . . . . . 10 (((π / 2) + 0) / π) = (1 / 2)
13241323oveq1i 7458 . . . . . . . . 9 ((((π / 2) + 0) / π) − 0) = ((1 / 2) − 0)
1325 halfcn 12508 . . . . . . . . . 10 (1 / 2) ∈ ℂ
13261325subid1i 11608 . . . . . . . . 9 ((1 / 2) − 0) = (1 / 2)
13271324, 1326eqtri 2768 . . . . . . . 8 ((((π / 2) + 0) / π) − 0) = (1 / 2)
13281327a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((((π / 2) + 0) / π) − 0) = (1 / 2))
13291251, 1316, 13283eqtrd 2784 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
133014, 15, 258, 259, 261, 826, 263, 265, 267, 39, 40, 41, 818, 817, 837, 593, 839, 841, 26, 37, 1228, 1241, 6, 1242, 27, 1244, 1329fourierdlem95 46122 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13311219, 1330syldan 590 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13321205a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1333 fveq2 6920 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
13341333fveq1d 6922 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
13351334oveq2d 7464 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13361335adantr 480 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13371336itgeq2dv 25837 . . . . . . . 8 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13381337adantl 481 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
133914adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
134015adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
1341775adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13421340, 1341readdcld 11319 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
13431339, 1342ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13441343adantlr 714 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13451242dirkerf 46018 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
13461345ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐷𝑛):ℝ⟶ℝ)
1347775adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13481346, 1347ffvelcdmd 7119 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13491344, 1348remulcld 11320 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
135014adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
135115adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1352210sseli 4004 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
13531352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13541351, 1353readdcld 11319 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
13551350, 1354ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13561355adantlr 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13571345ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
13581352adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13591357, 1358ffvelcdmd 7119 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13601356, 1359remulcld 11320 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
136147a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
13621242dirkercncf 46028 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
13631362adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1364 eqid 2740 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13651361, 1247, 825, 1166, 258, 831, 832, 833, 834, 835, 80, 836, 1363, 1364fourierdlem84 46111 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1366802, 804, 1360, 1365iblss 25860 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
13671349, 1366itgrecl 25853 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
13681332, 1338, 1142, 1367fvmptd 7036 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13691368eqcomd 2746 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13701219, 1369syldan 590 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13711227, 1331, 13703eqtrrd 2785 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)))
13721, 2, 1204, 1208, 1222, 1225, 1226, 1371climadd 15678 . 2 (𝜑𝑍 ⇝ (0 + (𝑌 / 2)))
13731213addlidd 11491 . 2 (𝜑 → (0 + (𝑌 / 2)) = (𝑌 / 2))
13741372, 1373breqtrd 5192 1 (𝜑𝑍 ⇝ (𝑌 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  csb 3921  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  ifcif 4548  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  cio 6523   Fn wfn 6568  wf 6569  cfv 6573   Isom wiso 6574  crio 7403  (class class class)co 7448  m cmap 8884  Fincfn 9003  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  0cn0 12553  cz 12639  cuz 12903  +crp 13057  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711   mod cmo 13920  chash 14379  abscabs 15283  cli 15530  Σcsu 15734  sincsin 16111  πcpi 16114  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  intcnt 23046  cnccncf 24921  volcvol 25517  𝐿1cibl 25671  citg 25672   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem112  46139
  Copyright terms: Public domain W3C validator