Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem104 Structured version   Visualization version   GIF version

Theorem fourierdlem104 43641
Description: The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem104.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem104.xre (𝜑𝑋 ∈ ℝ)
fourierdlem104.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem104.m (𝜑𝑀 ∈ ℕ)
fourierdlem104.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem104.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem104.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem104.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem104.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem104.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem104.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem104.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem104.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem104.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem104.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem104.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem104.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem104.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem104.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
fourierdlem104.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem104.o 𝑂 = (𝑈 ↾ (𝑑[,]π))
fourierdlem104.t 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
fourierdlem104.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem104.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem104.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem104.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem104.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem104 (𝜑𝑍 ⇝ (𝑌 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠   𝑄,𝑓   𝑄,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑊,𝑠   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑖,𝑌,𝑘,𝑙,𝑠,𝑡   𝑚,𝑌,𝑛,𝑖   𝑤,𝑌,𝑧   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑒,𝑓,𝑝,𝑑)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem104
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12281 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1918 . . . . 5 𝑛𝜑
4 nfmpt1 5178 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
5 nfmpt1 5178 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem104.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5178 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2904 . . . . 5 𝑛𝐸
9 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
10 elioore 13038 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (0(,)π) → 𝑑 ∈ ℝ)
1110adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ ℝ)
12 pire 25520 . . . . . . . . . . . . . . . 16 π ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ ℝ)
14 fourierdlem104.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
15 fourierdlem104.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
16 ioossre 13069 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1814, 17fssresd 6625 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
19 ioosscn 13070 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
21 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 pnfxr 10960 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2415ltpnfd 12786 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2521, 23, 15, 24lptioo1cn 43077 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
26 fourierdlem104.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2718, 20, 25, 26limcrecl 43060 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
28 ioossre 13069 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3014, 29fssresd 6625 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
31 ioosscn 13070 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
33 mnfxr 10963 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3515mnfltd 12789 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3621, 34, 15, 35lptioo2cn 43076 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
37 fourierdlem104.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3830, 32, 36, 37limcrecl 43060 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
39 fourierdlem104.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
40 fourierdlem104.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
41 fourierdlem104.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4214, 15, 27, 38, 39, 40, 41fourierdlem55 43592 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
43 ax-resscn 10859 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4542, 44fssd 6602 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℂ)
4712renegcli 11212 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4847a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ∈ ℝ)
4947a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π ∈ ℝ)
50 0red 10909 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 ∈ ℝ)
51 negpilt0 42708 . . . . . . . . . . . . . . . . . . . . . 22 -π < 0
5251a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → -π < 0)
53 0xr 10953 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
5412rexri 10964 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ ℝ*
55 ioogtlb 42923 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 0 < 𝑑)
5653, 54, 55mp3an12 1449 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 < 𝑑)
5749, 50, 10, 52, 56lttrd 11066 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π < 𝑑)
5849, 10, 57ltled 11053 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → -π ≤ 𝑑)
5958adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ≤ 𝑑)
6013leidd 11471 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → π ≤ π)
61 iccss 13076 . . . . . . . . . . . . . . . . . 18 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 𝑑 ∧ π ≤ π)) → (𝑑[,]π) ⊆ (-π[,]π))
6248, 13, 59, 60, 61syl22anc 835 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ (-π[,]π))
6346, 62fssresd 6625 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ)
64 fourierdlem104.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (𝑑[,]π))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑈 ↾ (𝑑[,]π)))
6665feq1d 6569 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑂:(𝑑[,]π)⟶ℂ ↔ (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ))
6763, 66mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂:(𝑑[,]π)⟶ℂ)
68 fourierdlem104.n . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘𝑇) − 1)
6912elexi 3441 . . . . . . . . . . . . . . . . . . . . . . . . 25 π ∈ V
7069prid2 4696 . . . . . . . . . . . . . . . . . . . . . . . 24 π ∈ {𝑑, π}
71 elun1 4106 . . . . . . . . . . . . . . . . . . . . . . . 24 (π ∈ {𝑑, π} → π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
73 fourierdlem104.t . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
7472, 73eleqtrri 2838 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ 𝑇
7574ne0ii 4268 . . . . . . . . . . . . . . . . . . . . 21 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ≠ ∅)
77 prfi 9019 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑑, π} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑑, π} ∈ Fin)
79 fzfi 13620 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0...𝑀) ∈ Fin
80 fourierdlem104.q . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 42596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ran 𝑄 ∈ Fin
83 infi 8972 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
8482, 83mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
85 unfi 8917 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑑, π} ∈ Fin ∧ (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8678, 84, 85syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8773, 86eqeltrid 2843 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ Fin)
88 hashnncl 14009 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9076, 89mpbird 256 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝑇) ∈ ℕ)
91 nnm1nn0 12204 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9368, 92eqeltrid 2843 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
9493adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
95 0red 10909 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 ∈ ℝ)
96 1red 10907 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ∈ ℝ)
9794nn0red 12224 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
98 0lt1 11427 . . . . . . . . . . . . . . . . . . 19 0 < 1
9998a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 1)
100 2re 11977 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ∈ ℝ)
10290nnred 11918 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝑇) ∈ ℝ)
103102adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘𝑇) ∈ ℝ)
104 iooltub 42938 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 𝑑 < π)
10553, 54, 104mp3an12 1449 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (0(,)π) → 𝑑 < π)
10610, 105ltned 11041 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → 𝑑 ≠ π)
107106adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≠ π)
108 hashprg 14038 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
10911, 12, 108sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
110107, 109mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) = 2)
111110eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 2 = (♯‘{𝑑, π}))
11287adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ∈ Fin)
113 ssun1 4102 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑑, π} ⊆ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
114113, 73sseqtrri 3954 . . . . . . . . . . . . . . . . . . . . . 22 {𝑑, π} ⊆ 𝑇
115 hashssle 42727 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ∈ Fin ∧ {𝑑, π} ⊆ 𝑇) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
116112, 114, 115sylancl 585 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
117111, 116eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ≤ (♯‘𝑇))
118101, 103, 96, 117lesub1dd 11521 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
119 1e2m1 12030 . . . . . . . . . . . . . . . . . . 19 1 = (2 − 1)
120118, 119, 683brtr4g 5104 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ≤ 𝑁)
12195, 96, 97, 99, 120ltletrd 11065 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 𝑁)
122121gt0ne0d 11469 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ≠ 0)
123 elnnne0 12177 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
12494, 122, 123sylanbrc 582 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ)
125 fourierdlem104.j . . . . . . . . . . . . . . . . 17 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12611leidd 11471 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑑)
12712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → π ∈ ℝ)
12810, 127, 105ltled 11053 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → 𝑑 ≤ π)
129128adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≤ π)
13011, 13, 11, 126, 129eliccd 42932 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ (𝑑[,]π))
13111, 13, 13, 129, 60eliccd 42932 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ (𝑑[,]π))
132130, 131jca 511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)))
133 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
134133, 69prss 4750 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)) ↔ {𝑑, π} ⊆ (𝑑[,]π))
135132, 134sylib 217 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ (𝑑[,]π))
136 inss2 4160 . . . . . . . . . . . . . . . . . . . . 21 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π)
137136a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π))
138 ioossicc 13094 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)π) ⊆ (𝑑[,]π)
139137, 138sstrdi 3929 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑[,]π))
140135, 139unssd 4116 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ (𝑑[,]π))
14173, 140eqsstrid 3965 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ (𝑑[,]π))
142133prid1 4695 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ {𝑑, π}
143 elun1 4106 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑑, π} → 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
144142, 143ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
145144, 73eleqtrri 2838 . . . . . . . . . . . . . . . . . 18 𝑑𝑇
146145a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑇)
14774a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ 𝑇)
148112, 68, 125, 11, 13, 141, 146, 147fourierdlem52 43589 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ((𝐽:(0...𝑁)⟶(𝑑[,]π) ∧ (𝐽‘0) = 𝑑) ∧ (𝐽𝑁) = π))
149148simplld 764 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
150148simplrd 766 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽‘0) = 𝑑)
151148simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽𝑁) = π)
152 elfzoelz 13316 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
153152zred 12355 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
155154ltp1d 11835 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15610, 127jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → (𝑑 ∈ ℝ ∧ π ∈ ℝ))
157133, 69prss 4750 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) ↔ {𝑑, π} ⊆ ℝ)
158156, 157sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → {𝑑, π} ⊆ ℝ)
159158adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ ℝ)
160 ioossre 13069 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑(,)π) ⊆ ℝ
161136, 160sstri 3926 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ)
163159, 162unssd 4116 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ ℝ)
16473, 163eqsstrid 3965 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ ℝ)
165112, 164, 125, 68fourierdlem36 43574 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
166165adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
167 elfzofz 13331 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
168167adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
169 fzofzp1 13412 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
170169adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
171 isorel 7177 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
172166, 168, 170, 171syl12anc 833 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
173155, 172mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17442adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
175174, 62feqresmpt 6820 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)) = (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)))
17662sselda 3917 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
17714, 15, 27, 38, 39fourierdlem9 43547 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
178177ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐻:(-π[,]π)⟶ℝ)
179178, 176ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) ∈ ℝ)
18040fourierdlem43 43581 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
181180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 176ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) ∈ ℝ)
183179, 182remulcld 10936 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18441fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
185176, 183, 184syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
186 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 ∈ ℝ)
18710adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ)
18812a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ)
189 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (𝑑[,]π))
190 eliccre 42933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
191187, 188, 189, 190syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
19256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑑)
193187rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ*)
19454a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ*)
195 iccgelb 13064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
196193, 194, 189, 195syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
197186, 187, 191, 192, 196ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
198197gt0ne0d 11469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
199198adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
200199neneqd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
201200iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
202197adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
203202iftrued 4464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
204203oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
205204oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
206201, 205eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
20714ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐹:ℝ⟶ℝ)
20815ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑋 ∈ ℝ)
209 iccssre 13090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21047, 12, 209mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
211210, 176sselid 3915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
212208, 211readdcld 10935 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
213207, 212ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21427ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑌 ∈ ℝ)
215213, 214resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℝ)
216215, 211, 199redivcld 11733 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ ℝ)
217206, 216eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
21839fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
219176, 217, 218syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
220219, 201, 2053eqtrd 2782 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
221188renegcld 11332 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ∈ ℝ)
22251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 0)
223221, 186, 191, 222, 197lttrd 11066 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 𝑠)
224221, 191, 223ltled 11053 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ≤ 𝑠)
225 iccleub 13063 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
226193, 194, 189, 225syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
227221, 188, 191, 224, 226eliccd 42932 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
228198neneqd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
229228iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
230100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℝ)
231191rehalfcld 12150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℝ)
232231resincld 15780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℝ)
233230, 232remulcld 10936 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
234 2cnd 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
235191recnd 10934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
236235halfcld 12148 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
237236sincld 15767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
238 2ne0 12007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ≠ 0)
240 fourierdlem44 43582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
241227, 198, 240syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ≠ 0)
242234, 237, 239, 241mulne0d 11557 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
243191, 233, 242redivcld 11733 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
244229, 243eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
24540fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
246227, 244, 245syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
247246adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
248220, 247oveq12d 7273 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
249200iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
250249oveq2d 7271 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
251185, 248, 2503eqtrd 2782 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252251mpteq2dva 5170 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25365, 175, 2523eqtrd 2782 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
254253adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255254reseq1d 5879 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
25614adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
25715adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
258 fourierdlem104.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
259 fourierdlem104.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
260259adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑀 ∈ ℕ)
261 fourierdlem104.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
262261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑉 ∈ (𝑃𝑀))
263 fourierdlem104.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
264263adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
265 fourierdlem104.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
266265adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
267 fourierdlem104.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
268267adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
269105adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 < π)
27050, 10ltnled 11052 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → (0 < 𝑑 ↔ ¬ 𝑑 ≤ 0))
27156, 270mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → ¬ 𝑑 ≤ 0)
272271intn3an2d 1478 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → ¬ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π))
273 elicc2 13073 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
27410, 12, 273sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
275272, 274mtbird 324 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → ¬ 0 ∈ (𝑑[,]π))
276275adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ¬ 0 ∈ (𝑑[,]π))
27727adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑌 ∈ ℝ)
278 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
279 eqid 2738 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
280 eqid 2738 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
281 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
282 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
283282fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
284281, 283oveq12d 7273 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
285284sseq2d 3949 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
286285cbvriotavw 7222 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
287256, 257, 258, 260, 262, 264, 266, 268, 11, 13, 269, 62, 276, 277, 278, 80, 73, 68, 125, 279, 280, 286fourierdlem86 43623 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
288287simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
289255, 288eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
290287simplld 764 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
291254eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
292291reseq1d 5879 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
293292oveq1d 7270 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
294290, 293eleqtrd 2841 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295287simplrd 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
296292oveq1d 7270 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
297295, 296eleqtrd 2841 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
298 eqid 2738 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
29967adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(𝑑[,]π)⟶ℂ)
30011ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
30112a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → π ∈ ℝ)
302 elioore 13038 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
303302adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30462, 210sstrdi 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ ℝ)
305304adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ ℝ)
306149adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
307306, 168ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (𝑑[,]π))
308305, 307sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
309308adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31011adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
311310rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
31254a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ*)
313 iccgelb 13064 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽𝑘) ∈ (𝑑[,]π)) → 𝑑 ≤ (𝐽𝑘))
314311, 312, 307, 313syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ≤ (𝐽𝑘))
315314adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ≤ (𝐽𝑘))
316309rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
317306, 170ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π))
318305, 317sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
319318rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
320319adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
321 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
322 ioogtlb 42923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
323316, 320, 321, 322syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
324300, 309, 303, 315, 323lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 < 𝑠)
325300, 303, 324ltled 11053 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑𝑠)
326318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
327 iooltub 42938 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
328316, 320, 321, 327syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
329 iccleub 13063 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π)) → (𝐽‘(𝑘 + 1)) ≤ π)
330311, 312, 317, 329syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ π)
331330adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ π)
332303, 326, 301, 328, 331ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < π)
333303, 301, 332ltled 11053 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ≤ π)
334300, 301, 303, 325, 333eliccd 42932 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (𝑑[,]π))
335334ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
336 dfss3 3905 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
337335, 336sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
338299, 337feqresmpt 6820 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
339 simplll 771 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
340 simpllr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (0(,)π))
34164fveq1i 6757 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠)
342341a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠))
343 fvres 6775 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (𝑑[,]π) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
344343adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
345247, 249eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
346220, 345oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
347215recnd 10934 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℂ)
348235adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
349 2cnd 11981 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
350348halfcld 12148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
351350sincld 15767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
352349, 351mulcld 10926 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
353242adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
354347, 348, 352, 199, 353dmdcan2d 11711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
355185, 346, 3543eqtrd 2782 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
356342, 344, 3553eqtrd 2782 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
357339, 340, 334, 356syl21anc 834 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
358339, 340, 334, 354syl21anc 834 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
359358eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
360 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)))
361 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
362361fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
363362oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑌) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
364 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
365363, 364oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
366365adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
367 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
368 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V
369368a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V)
370360, 366, 367, 369fvmptd 6864 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
371 eqidd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
372 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
373372fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
374373oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
375364, 374oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
376375adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
377 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
378377a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
379371, 376, 367, 378fvmptd 6864 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380370, 379oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
381380eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
382381adantllr 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
383357, 359, 3823eqtrd 2782 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
384383mpteq2dva 5170 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
385338, 384eqtr2d 2779 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
386385oveq2d 7271 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
38743a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
388337, 305sstrd 3927 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
38921tgioo2 23872 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39021, 389dvres 24980 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(𝑑[,]π)⟶ℂ) ∧ ((𝑑[,]π) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
391387, 299, 305, 388, 390syl22anc 835 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
392 ioontr 42939 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
393392a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
394393reseq2d 5880 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
395386, 391, 3943eqtrrd 2783 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
39614ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
39715ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
398259ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
399261ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
400 fourierdlem104.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
401400ad4ant14 748 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40262adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ (-π[,]π))
403337, 402sstrd 3927 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
40453a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
405 0red 10909 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
40656ad2antlr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < 𝑑)
407405, 310, 308, 406, 314ltletrd 11065 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < (𝐽𝑘))
408308, 319, 404, 407ltnelicc 42925 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
40927ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑌 ∈ ℝ)
41012a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
411269adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < π)
412 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
413 biid 260 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
414397, 258, 398, 399, 310, 410, 411, 402, 80, 73, 68, 125, 412, 286, 413fourierdlem50 43587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
415414simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
416414simprd 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
417365cbvmptv 5183 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
418375cbvmptv 5183 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
420396, 397, 258, 398, 399, 401, 308, 318, 173, 403, 408, 409, 80, 415, 416, 417, 418, 419fourierdlem72 43609 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
421395, 420eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
422 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
423 eqid 2738 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
424 fourierdlem104.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
425424, 415eqeltrid 2843 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
426 simpll 763 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
427426, 425jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
428 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
429428anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
430 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
431 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
432431fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
433430, 432oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
434 raleq 3333 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
435433, 434syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
436435rexbidv 3225 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
437429, 436imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
438 fourierdlem104.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
439437, 438vtoclg 3495 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440425, 427, 439sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
441 nfv 1918 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁))
442 nfra1 3142 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
443441, 442nfan 1903 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
44547a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
446445, 15readdcld 10935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
44712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
448447, 15readdcld 10935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
449446, 448iccssred 13095 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
450 ressxr 10950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
451449, 450sstrdi 3929 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
452451ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
453258, 398, 399fourierdlem15 43553 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
454 elfzofz 13331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
455425, 454syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
456453, 455ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
457452, 456sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
458457adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
459 fzofzp1 13412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
460425, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
461453, 460ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462452, 461sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
463462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
464 elioore 13038 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
465464adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
46647a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
467466, 410, 397, 258, 398, 399, 455, 80fourierdlem13 43551 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
468467simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
469468adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
470449ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
471470, 456sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
472471adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
473469, 472eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
474397, 308readdcld 10935 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
475474adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
476467simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
477471, 397resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
478476, 477eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
479466, 410, 397, 258, 398, 399, 460, 80fourierdlem13 43551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
480479simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
481470, 461sseldd 3918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
482481, 397resubcld 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
483480, 482eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
484424eqcomi 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
485484fveq2i 6759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
486484oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
487486fveq2i 6759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
488485, 487oveq12i 7267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
489416, 488sseqtrdi 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
490478, 483, 308, 318, 173, 489fourierdlem10 43548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
491490simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
492478, 308, 397, 491leadd2dd 11520 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
493492adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
494475rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
495397, 318readdcld 10935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
496495rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
497496adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
498 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
499 ioogtlb 42923 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
500494, 497, 498, 499syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
501473, 475, 465, 493, 500lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
502469, 501eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
503495adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
504479simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
505504, 481eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
506505adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
507 iooltub 42938 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
508494, 497, 498, 507syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
509490simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
510318, 483, 397, 509leadd2dd 11520 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
511510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
512465, 503, 506, 508, 511ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
513504eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
514513adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
515512, 514breqtrd 5096 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
516458, 463, 465, 502, 515eliood 42926 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
517516adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
518 rspa 3130 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
519444, 517, 518syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
520519ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
521443, 520ralrimi 3139 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
522521ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
523522reximdv 3201 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
524440, 523mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
525433raleqdv 3339 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
526525rexbidv 3225 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
527429, 526imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
528 fourierdlem104.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
529527, 528vtoclg 3495 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
530425, 427, 529sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
531 nfra1 3142 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
532441, 531nfan 1903 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53314, 44fssd 6602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
534 ssid 3939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
535534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
536 ioossre 13069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
537536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
53821, 389dvres 24980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
53944, 533, 535, 537, 538syl22anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
540 ioontr 42939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
541540reseq2i 5877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
542539, 541eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
543542fveq1d 6758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
544 fvres 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
545543, 544sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
546545ad4ant14 748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
547546fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
548547adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
549 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
550516adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
551 rspa 3130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
552549, 550, 551syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
553548, 552eqbrtrd 5092 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
554553ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
555532, 554ralrimi 3139 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
556555ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
557556reximdv 3201 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
558530, 557mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
559311, 312, 306, 412fourierdlem8 43546 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
560124ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
561149, 304fssd 6602 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶ℝ)
562561ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
563 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ (𝑑[,]π))
564150eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 = (𝐽‘0))
565151eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → π = (𝐽𝑁))
566564, 565oveq12d 7273 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
567566adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
568563, 567eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
569568adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
570 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
571 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
572571breq1d 5080 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
573572cbvrabv 3416 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
574573supeq1i 9136 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
575560, 562, 569, 570, 574fourierdlem25 43563 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
576533ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
577534a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
578536a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
579387, 576, 577, 578, 538syl22anc 835 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
580516ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
581 dfss3 3905 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
582580, 581sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
583 resabs2 5912 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584582, 583syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
585541, 579, 5843eqtr4a 2805 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
586582resabs1d 5911 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
587586eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
588585, 584, 5873eqtrrd 2783 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
589433reseq2d 5880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
590589, 433feq12d 6572 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
591429, 590imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
592 cncff 23962 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
593400, 592syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
594591, 593vtoclg 3495 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
595594anabsi7 667 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
596427, 595syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
597596, 582fssresd 6625 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
598588, 597feq1dd 42592 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
599363, 374oveq12d 7273 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
600599cbvmptv 5183 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
601 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
602601fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
603602breq1d 5080 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
604603cbvralvw 3372 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
605604anbi2i 622 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
606 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
607606fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
608607breq1d 5080 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
609608cbvralvw 3372 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
610605, 609anbi12i 626 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
611256, 257, 11, 13, 62, 276, 277, 422, 423, 524, 558, 149, 173, 559, 575, 598, 600, 610fourierdlem80 43617 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
612354mpteq2dva 5170 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
613253, 612eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
614613oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
615614dmeqd 5803 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
616 nfcv 2906 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
617 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
618 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
619 nfmpt1 5178 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
620617, 618, 619nfov 7285 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
621620nfdm 5849 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
622616, 621raleqf 3323 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
623615, 622syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
624614fveq1d 6758 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
625624fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
626625breq1d 5080 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
627626ralbidv 3120 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
628623, 627bitrd 278 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
629628rexbidv 3225 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
630611, 629mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
631 eqid 2738 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
632 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
633 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
634 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
635634fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
636633, 635oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
637636sseq2d 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
638637cbvriotavw 7222 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
639638fveq2i 6759 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
640639eqeq2i 2751 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
641640a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
642 csbeq1 3831 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
643638, 642mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
644641, 643ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
645644mptru 1546 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
646645oveq1i 7265 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌)
647646oveq1i 7265 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘))
648647oveq1i 7265 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
649648a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
650 eqeq1 2742 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
651638oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
652651fveq2i 6759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
653652eqeq2i 2751 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
654653a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
655 csbeq1 3831 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
656638, 655mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
657654, 656ifbieq1d 4480 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
658657mptru 1546 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
659658oveq1i 7265 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌)
660659oveq1i 7265 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1)))
661660oveq1i 7265 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
662661a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
663 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
664650, 662, 663ifbieq12d 4484 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
665632, 649, 664ifbieq12d 4484 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
666665cbvmptv 5183 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
66711, 13, 67, 124, 149, 150, 151, 173, 289, 294, 297, 298, 421, 630, 631, 666fourierdlem73 43610 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
668 breq2 5074 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
669668rexralbidv 3229 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
670669cbvralvw 3372 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
671667, 670sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
672671adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
673 rphalfcl 12686 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
674673ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (𝑒 / 2) ∈ ℝ+)
675 breq2 5074 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
676675rexralbidv 3229 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
677676rspccva 3551 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
678672, 674, 677syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
679138a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑(,)π) ⊆ (𝑑[,]π))
680679sselda 3917 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (𝑑[,]π))
681680, 343syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
682341, 681eqtr2id 2792 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → (𝑈𝑠) = (𝑂𝑠))
683682oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
684683itgeq2dv 24851 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
685684adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
686685fveq2d 6760 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
687 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688686, 687eqbrtrd 5092 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
689688ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
690689adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
691690ralimdv 3103 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
692691reximdv 3201 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
693678, 692mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
694693adantr 480 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
695 nfv 1918 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π))
696 nfra1 3142 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
697695, 696nfan 1903 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
698 nfv 1918 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
699697, 698nfan 1903 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
700 nfv 1918 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
701699, 700nfan 1903 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
702 simpll 763 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)))
703 eluznn 12587 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
704703adantll 710 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
705702, 704jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
706705adantllr 715 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
707 simpllr 772 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708703adantll 710 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
709 rspa 3130 . . . . . . . . . . . . . . . . . 18 ((∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
710707, 708, 709syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
711706, 710jca 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
712711adantlr 711 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
713 nnre 11910 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
714713rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
715714adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
71622a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
717 eluzelre 12522 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
718 halfre 12117 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ
719718a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
720717, 719readdcld 10935 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
721720adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
722713adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
723717adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
724 eluzle 12524 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
725724adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
726 halfgt0 12119 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
727726a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
728718a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
729728, 723ltaddposd 11489 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
730727, 729mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
731722, 723, 721, 725, 730lelttrd 11063 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
732721ltpnfd 12786 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
733715, 716, 721, 731, 732eliood 42926 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
734733adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
735 simplr 765 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
736 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
737736fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
738737oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
739738adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
740739itgeq2dv 24851 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
741740fveq2d 6760 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
742741breq1d 5080 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
743742rspcv 3547 . . . . . . . . . . . . . . . . 17 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
744734, 735, 743sylc 65 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
745744adantlll 714 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
746 fourierdlem104.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
747712, 745, 746sylanbrc 582 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
748 0red 10909 . . . . . . . . . . . . . . . . 17 (𝜒 → 0 ∈ ℝ)
74912a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → π ∈ ℝ)
750 ioossicc 13094 . . . . . . . . . . . . . . . . . 18 (0(,)π) ⊆ (0[,]π)
751746biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
752 simp-4r 780 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (0(,)π))
753751, 752syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (0(,)π))
754750, 753sselid 3915 . . . . . . . . . . . . . . . . 17 (𝜒𝑑 ∈ (0[,]π))
755 simp-5l 781 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
756751, 755syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
75742adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
75847rexri 10964 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ*
759 0re 10908 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
76047, 759, 51ltleii 11028 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ≤ 0
761 iooss1 13043 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ* ∧ -π ≤ 0) → (0(,)π) ⊆ (-π(,)π))
762758, 760, 761mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (0(,)π) ⊆ (-π(,)π)
763 ioossicc 13094 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π[,]π)
764762, 763sstri 3926 . . . . . . . . . . . . . . . . . . . . . . 23 (0(,)π) ⊆ (-π[,]π)
765764sseli 3913 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (-π[,]π))
766765adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
767757, 766ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
768756, 767sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
769 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
770751, 769syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℕ)
771770nnred 11918 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑘 ∈ ℝ)
772718a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (1 / 2) ∈ ℝ)
773771, 772readdcld 10935 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
774773adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → (𝑘 + (1 / 2)) ∈ ℝ)
775 elioore 13038 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
776775adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
777774, 776remulcld 10936 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
778777resincld 15780 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
779768, 778remulcld 10936 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
780779recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
78153a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ∈ ℝ*)
78254a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ∈ ℝ*)
783748leidd 11471 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 0)
784 ioossre 13069 . . . . . . . . . . . . . . . . . . . . 21 (0(,)π) ⊆ ℝ
785784, 753sselid 3915 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ∈ ℝ)
786781, 782, 753, 104syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 < π)
787785, 749, 786ltled 11053 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ≤ π)
788 ioossioo 13102 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ π)) → (0(,)𝑑) ⊆ (0(,)π))
789781, 782, 783, 787, 788syl22anc 835 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ⊆ (0(,)π))
790 ioombl 24634 . . . . . . . . . . . . . . . . . . 19 (0(,)𝑑) ∈ dom vol
791790a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ∈ dom vol)
792 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
793792anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
794 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → 𝑛 = 𝑘)
795794oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
796795oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
797796fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
798797oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
799798mpteq2dva 5170 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
800799eleq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
801793, 800imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
802764a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
803 ioombl 24634 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)π) ∈ dom vol
804803a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
80542ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
806805adantlr 711 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
807 nnre 11910 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
808 readdcl 10885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
809807, 718, 808sylancl 585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
810809adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
811 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
812210, 811sselid 3915 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
813810, 812remulcld 10936 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
814813resincld 15780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
815814adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
816806, 815remulcld 10936 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
817 fourierdlem104.g . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
818 fourierdlem104.s . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
819818fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
820811, 814, 819syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
821820adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
822821oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
823822mpteq2dva 5170 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
824817, 823eqtr2id 2792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
82514adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
826 fourierdlem104.x . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ ran 𝑉)
827826adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
82826adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
82937adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
830807adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
831259adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
832261adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
833263adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
834265adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
835267adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
836 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
837 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D 𝐹) = (ℝ D 𝐹)
838593adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
839 fourierdlem104.a . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
840839adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
841 fourierdlem104.b . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
842841adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
843258, 825, 827, 828, 829, 39, 40, 41, 830, 818, 817, 831, 832, 833, 834, 835, 80, 836, 837, 838, 840, 842fourierdlem88 43625 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
844824, 843eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
845802, 804, 816, 844iblss 24874 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
846801, 845chvarvv 2003 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
847756, 770, 846syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
848789, 791, 779, 847iblss 24874 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (0(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
849781, 782, 753, 55syl3anc 1369 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 < 𝑑)
850748, 785, 849ltled 11053 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 𝑑)
851749leidd 11471 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ≤ π)
852 ioossioo 13102 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 𝑑 ∧ π ≤ π)) → (𝑑(,)π) ⊆ (0(,)π))
853781, 782, 850, 851, 852syl22anc 835 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ⊆ (0(,)π))
854 ioombl 24634 . . . . . . . . . . . . . . . . . . 19 (𝑑(,)π) ∈ dom vol
855854a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ∈ dom vol)
856853, 855, 779, 847iblss 24874 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (𝑑(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
857748, 749, 754, 780, 848, 856itgsplitioo 24907 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
858857fveq2d 6760 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
859789sselda 3917 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)𝑑)) → 𝑠 ∈ (0(,)π))
860859, 779syldan 590 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
861860, 848itgcl 24853 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
862853sselda 3917 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (0(,)π))
863862, 779syldan 590 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
864863, 856itgcl 24853 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
865861, 864addcld 10925 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
866865abscld 15076 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
867861abscld 15076 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
868864abscld 15076 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
869867, 868readdcld 10935 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
870 simp-5r 782 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
871751, 870syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
872871rpred 12701 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
873861, 864abstrid 15096 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
874751simplrd 766 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
875751simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
876867, 868, 872, 874, 875lt2halvesd 12151 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
877866, 869, 872, 873, 876lelttrd 11063 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
878858, 877eqbrtrd 5092 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
879747, 878syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
880879ex 412 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
881701, 880ralrimi 3139 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
882881ex 412 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
883882reximdva 3202 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
884694, 883mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
885 pipos 25522 . . . . . . . . . . . . . 14 0 < π
88647, 759, 12lttri 11031 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
88751, 885, 886mp2an 688 . . . . . . . . . . . . 13 -π < π
88847, 12, 887ltleii 11028 . . . . . . . . . . . 12 -π ≤ π
889888a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
890258fourierdlem2 43540 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
891259, 890syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
892261, 891mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
893892simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
894 elmapi 8595 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
895893, 894syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
896895ffvelrnda 6943 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
89715adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
898896, 897resubcld 11333 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
899898, 80fmptd 6970 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
90080a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
901 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
902901oveq1d 7270 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
903902adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
904259nnnn0d 12223 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
905 nn0uz 12549 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
906904, 905eleqtrdi 2849 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
907 eluzfz1 13192 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
908906, 907syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
909895, 908ffvelrnd 6944 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
910909, 15resubcld 11333 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
911900, 903, 908, 910fvmptd 6864 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
912892simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
913912simplld 764 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
914913oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
915445recnd 10934 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
91615recnd 10934 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
917915, 916pncand 11263 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
918911, 914, 9173eqtrd 2782 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
919445, 447, 15, 258, 836, 259, 261, 80fourierdlem14 43552 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
920836fourierdlem2 43540 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
921259, 920syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
922919, 921mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
923922simprd 495 . . . . . . . . . . . 12 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
924923simplrd 766 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
925923simprd 495 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
926925r19.21bi 3132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
92714adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
928836, 259, 919fourierdlem15 43553 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
929928adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
930 elfzofz 13331 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
931930adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
932929, 931ffvelrnd 6944 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
933 fzofzp1 13412 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
934933adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
935929, 934ffvelrnd 6944 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
93615adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
937 ffn 6584 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
938893, 894, 9373syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
939 fvelrnb 6812 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
940938, 939syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
941826, 940mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
942 oveq1 7262 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
943942adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
944916subidd 11250 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
945944ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
946943, 945eqtr2d 2779 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
947946ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
948947reximdva 3202 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
949941, 948mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
95080elrnmpt 5854 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
951759, 950ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
952949, 951sylibr 233 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
953836, 259, 919, 952fourierdlem12 43550 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
954895adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
955954, 931ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
956955, 936resubcld 11333 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
95780fvmpt2 6868 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
958931, 956, 957syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
959958oveq1d 7270 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
960955recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
961916adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
962960, 961npcand 11266 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
963959, 962eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
964 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
965964oveq1d 7270 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
966965cbvmptv 5183 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
96780, 966eqtr4i 2769 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
968967a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
969 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
970969oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
971970adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
972954, 934ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
973972, 936resubcld 11333 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
974968, 971, 934, 973fvmptd 6864 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
975974oveq1d 7270 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
976972recnd 10934 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
977976, 961npcand 11266 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
978975, 977eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
979963, 978oveq12d 7273 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
980979reseq2d 5880 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
981979oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
982263, 980, 9813eltr4d 2854 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
98327adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
98438adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
985927, 932, 935, 936, 953, 982, 983, 984, 39fourierdlem40 43578 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
986 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
98743a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
988986, 987fssd 6602 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
989400, 592, 9883syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
990 eqid 2738 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
99115, 258, 14, 826, 26, 38, 39, 259, 261, 265, 80, 836, 837, 989, 841, 990fourierdlem75 43612 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
992 eqid 2738 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
99315, 258, 14, 826, 27, 37, 39, 259, 261, 267, 80, 836, 837, 593, 839, 992fourierdlem74 43611 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
994 fveq2 6756 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
995 oveq1 7262 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
996995fveq2d 6760 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
997994, 996oveq12d 7273 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
998997cbvmptv 5183 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
999445, 447, 889, 177, 259, 899, 918, 924, 926, 985, 991, 993, 998fourierdlem70 43607 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1000 eqid 2738 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1001 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10021001fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10031002breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10041003cbvralvw 3372 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10051004ralbii 3090 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
100610053anbi3i 1157 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10071006anbi1i 623 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10081007anbi1i 623 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10091008anbi1i 623 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
101014, 15, 27, 38, 39, 40, 41, 818, 817, 999, 843, 1000, 1009fourierdlem87 43624 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1011 iftrue 4462 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10121011adantl 481 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
101353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
101454a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ*)
1015 rpre 12667 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10161015adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
1017 rpgt0 12671 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10181017adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < 𝑐)
101912rehalfcli 12152 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
10201019a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
102112a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1022 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1023 halfpos 12133 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
102412, 1023ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 < π ↔ (π / 2) < π)
1025885, 1024mpbi 229 . . . . . . . . . . . . . . . . 17 (π / 2) < π
10261025a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10271016, 1020, 1021, 1022, 1026lelttrd 11063 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10281013, 1014, 1016, 1018, 1027eliood 42926 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ (0(,)π))
10291012, 1028eqeltrd 2839 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1030 iffalse 4465 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
1031 2pos 12006 . . . . . . . . . . . . . . . . . 18 0 < 2
103212, 100, 885, 1031divgt0ii 11822 . . . . . . . . . . . . . . . . 17 0 < (π / 2)
1033 elioo2 13049 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π)))
103453, 54, 1033mp2an 688 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π))
10351019, 1032, 1025, 1034mpbir3an 1339 . . . . . . . . . . . . . . . 16 (π / 2) ∈ (0(,)π)
10361035a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → (π / 2) ∈ (0(,)π))
10371030, 1036eqeltrd 2839 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10381037adantl 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10391029, 1038pm2.61dan 809 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
104010393ad2ant2 1132 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1041 ioombl 24634 . . . . . . . . . . . . . . 15 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol
10421041a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol)
1043 simpr 484 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10441042, 1043jca 511 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1045 ioossicc 13094 . . . . . . . . . . . . . . . 16 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
104647a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
104712a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
1048760a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ 0)
1049784, 1039sselid 3915 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
10501019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
1051 min2 12853 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10521015, 1019, 1051sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10531025a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) < π)
10541049, 1050, 1047, 1052, 1053lelttrd 11063 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) < π)
10551049, 1047, 1054ltled 11053 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)
1056 iccss 13076 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)) → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10571046, 1047, 1048, 1055, 1056syl22anc 835 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10581045, 1057sstrid 3928 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
1059 0red 10909 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
10601018, 1012breqtrrd 5098 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10611032, 1030breqtrrid 5108 . . . . . . . . . . . . . . . . . . . . 21 𝑐 ≤ (π / 2) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10621061adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10631060, 1062pm2.61dan 809 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10641059, 1049, 1063ltled 11053 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1065 volioo 24638 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10661059, 1049, 1064, 1065syl3anc 1369 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10671049recnd 10934 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
10681067subid1d 11251 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10691066, 1068eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1070 min1 12852 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10711015, 1019, 1070sylancl 585 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10721069, 1071eqbrtrd 5092 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)
10731058, 1072jca 511 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10741073adantr 480 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
1075 sseq1 3942 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (𝑢 ⊆ (-π[,]π) ↔ (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π)))
1076 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘𝑢) = (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))))
10771076breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10781075, 1077anbi12d 630 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)))
1079 itgeq1 24842 . . . . . . . . . . . . . . . . . 18 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10801079fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10811080breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10821081ralbidv 3120 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10831078, 1082imbi12d 344 . . . . . . . . . . . . . 14 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
10841083rspcva 3550 . . . . . . . . . . . . 13 (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10851044, 1074, 1084sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
108610853adant1 1128 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1087 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (0(,)𝑑) = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
10881087itgeq1d 43388 . . . . . . . . . . . . . . 15 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10891088fveq2d 6760 . . . . . . . . . . . . . 14 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10901089breq1d 5080 . . . . . . . . . . . . 13 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10911090ralbidv 3120 . . . . . . . . . . . 12 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10921091rspcev 3552 . . . . . . . . . . 11 ((if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10931040, 1086, 1092syl2anc 583 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10941093rexlimdv3a 3214 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10951010, 1094mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1096884, 1095r19.29a 3217 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
10971096ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1098 nnex 11909 . . . . . . . . 9 ℕ ∈ V
10991098mptex 7081 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V
11001099a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V)
1101 eqidd 2739 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠))
1102765adantl 481 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1103767ad4ant14 748 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1104765adantl 481 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1105 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1106 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11071105, 1106eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11081107nnred 11918 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1109718a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11101108, 1109readdcld 10935 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11111110adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1112210, 1104sselid 3915 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11131111, 1112remulcld 10936 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11141113resincld 15780 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11151104, 1114, 819syl2anc 583 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11161115adantlll 714 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11171108adantll 710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11181117adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑛 ∈ ℝ)
1119 1red 10907 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 1 ∈ ℝ)
11201119rehalfcld 12150 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (1 / 2) ∈ ℝ)
11211118, 1120readdcld 10935 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1122210, 1102sselid 3915 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11231121, 1122remulcld 10936 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11241123resincld 15780 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11251116, 1124eqeltrd 2839 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) ∈ ℝ)
11261103, 1125remulcld 10936 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1127817fvmpt2 6868 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11281102, 1126, 1127syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1129 oveq1 7262 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11301129oveq1d 7270 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11311130fveq2d 6760 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11321131ad2antlr 723 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11331116, 1132eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11341133oveq2d 7271 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11351128, 1134eqtrd 2778 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11361135itgeq2dv 24851 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1137 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1138798itgeq2dv 24851 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11391138eleq1d 2823 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1140793, 1139imbi12d 344 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1141767adantlr 711 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1142 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11431142, 765, 814syl2an 595 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11441141, 1143remulcld 10936 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11451144, 845itgcl 24853 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11461140, 1145chvarvv 2003 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11471101, 1136, 1137, 1146fvmptd 6864 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑘) = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11489, 2, 1100, 1147, 1146clim0c 15144 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
11491097, 1148mpbird 256 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0)
11501098mptex 7081 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π)) ∈ V
11516, 1150eqeltri 2835 . . . . . 6 𝐸 ∈ V
11521151a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
11531098mptex 7081 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
11541153a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
115512recni 10920 . . . . . . 7 π ∈ ℂ
11561155a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1157 eqidd 2739 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1158 eqidd 2739 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1159 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
116012a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
11611157, 1158, 1159, 1160fvmptd 6864 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11621161adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11639, 2, 1154, 1156, 1162climconst 15180 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1164759, 885gtneii 11017 . . . . . 6 π ≠ 0
11651164a1i 11 . . . . 5 (𝜑 → π ≠ 0)
116615adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
116727adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
116838adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1169825, 1166, 1167, 1168, 39, 40, 41, 830, 818, 817fourierdlem67 43604 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
11701169adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝐺:(-π[,]π)⟶ℝ)
1171802sselda 3917 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
11721170, 1171ffvelrnd 6944 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) ∈ ℝ)
11731169ffvelrnda 6943 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
11741169feqmptd 6819 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
11751174, 843eqeltrrd 2840 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1176802, 804, 1173, 1175iblss 24874 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ (𝐺𝑠)) ∈ 𝐿1)
11771172, 1176itgcl 24853 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ)
1178 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
11791178fvmpt2 6868 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11801142, 1177, 1179syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11811180, 1177eqeltrd 2839 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1182 eqid 2738 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
11831182fvmpt2 6868 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
118412, 1183mpan2 687 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
11851155a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ∈ ℂ)
11861164a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ≠ 0)
1187 eldifsn 4717 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
11881185, 1186, 1187sylanbrc 582 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
11891184, 1188eqeltrd 2839 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11901189adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11911155a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
11921164a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
11931177, 1191, 1192divcld 11681 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
11946fvmpt2 6868 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11951142, 1193, 1194syl2anc 583 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11961180eqcomd 2744 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛))
11971184eqcomd 2744 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11981197adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11991196, 1198oveq12d 7273 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12001195, 1199eqtrd 2778 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12013, 4, 5, 8, 9, 2, 1149, 1152, 1163, 1165, 1181, 1190, 1200climdivf 43043 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12021155, 1164div0i 11639 . . . . 5 (0 / π) = 0
12031202a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12041201, 1203breqtrd 5096 . . 3 (𝜑𝐸 ⇝ 0)
1205 fourierdlem104.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12061098mptex 7081 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12071205, 1206eqeltri 2835 . . . 4 𝑍 ∈ V
12081207a1i 11 . . 3 (𝜑𝑍 ∈ V)
12091098mptex 7081 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V
12101209a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V)
1211 limccl 24944 . . . . . 6 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
12121211, 26sselid 3915 . . . . 5 (𝜑𝑌 ∈ ℂ)
12131212halfcld 12148 . . . 4 (𝜑 → (𝑌 / 2) ∈ ℂ)
1214 eqidd 2739 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) = (𝑚 ∈ ℕ ↦ (𝑌 / 2)))
1215 eqidd 2739 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑌 / 2) = (𝑌 / 2))
12169eqcomi 2747 . . . . . . . 8 (ℤ‘1) = ℕ
12171216eleq2i 2830 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12181217biimpi 215 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12191218adantl 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12201213adantr 480 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑌 / 2) ∈ ℂ)
12211214, 1215, 1219, 1220fvmptd 6864 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) = (𝑌 / 2))
12221, 2, 1210, 1213, 1221climconst 15180 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ⇝ (𝑌 / 2))
12231193, 6fmptd 6970 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12241223adantr 480 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12251224, 1219ffvelrnd 6944 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12261221, 1220eqeltrd 2839 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) ∈ ℂ)
12271221oveq2d 7271 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑌 / 2)))
1228803a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
1229 0red 10909 . . . . . . . . . . . . . 14 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ)
12301229rexrd 10956 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ*)
123154a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → π ∈ ℝ*)
1232 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (0(,)π))
1233 ioogtlb 42923 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12341230, 1231, 1232, 1233syl3anc 1369 . . . . . . . . . . . 12 (𝑠 ∈ (0(,)π) → 0 < 𝑠)
12351234gt0ne0d 11469 . . . . . . . . . . 11 (𝑠 ∈ (0(,)π) → 𝑠 ≠ 0)
12361235neneqd 2947 . . . . . . . . . 10 (𝑠 ∈ (0(,)π) → ¬ 𝑠 = 0)
1237 velsn 4574 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12381236, 1237sylnibr 328 . . . . . . . . 9 (𝑠 ∈ (0(,)π) → ¬ 𝑠 ∈ {0})
1239765, 1238eldifd 3894 . . . . . . . 8 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12401239ssriv 3921 . . . . . . 7 (0(,)π) ⊆ ((-π[,]π) ∖ {0})
12411240a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ((-π[,]π) ∖ {0}))
1242 fourierdlem104.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
12431234adantl 481 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12441243iftrued 4464 . . . . . 6 ((𝜑𝑠 ∈ (0(,)π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
1245 eqid 2738 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
1246 0red 10909 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
124712a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
1248759, 12, 885ltleii 11028 . . . . . . . . 9 0 ≤ π
12491248a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
1250 eqid 2738 . . . . . . . 8 (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
12511242, 1142, 1245, 1246, 1247, 1249, 1250dirkeritg 43533 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)))
1252 ubicc2 13126 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
125353, 54, 1248, 1252mp3an 1459 . . . . . . . . . 10 π ∈ (0[,]π)
1254 oveq1 7262 . . . . . . . . . . . . 13 (𝑠 = π → (𝑠 / 2) = (π / 2))
1255 oveq2 7263 . . . . . . . . . . . . . . . . . 18 (𝑠 = π → (𝑘 · 𝑠) = (𝑘 · π))
12561255fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑠 = π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · π)))
12571256oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝑠 = π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · π)) / 𝑘))
1258 elfzelz 13185 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
12591258zcnd 12356 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
12601155a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
12611164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ≠ 0)
12621259, 1260, 1261divcan4d 11687 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) = 𝑘)
12631262, 1258eqeltrd 2839 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) ∈ ℤ)
12641259, 1260mulcld 10926 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · π) ∈ ℂ)
1265 sineq0 25585 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 · π) ∈ ℂ → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12661264, 1265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12671263, 1266mpbird 256 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · π)) = 0)
12681267oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = (0 / 𝑘))
1269 0red 10909 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1270 1red 10907 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
12711258zred 12355 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
127298a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 < 1)
1273 elfzle1 13188 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
12741269, 1270, 1271, 1272, 1273ltletrd 11065 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
12751274gt0ne0d 11469 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
12761259, 1275div0d 11680 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
12771268, 1276eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = 0)
12781257, 1277sylan9eq 2799 . . . . . . . . . . . . . . 15 ((𝑠 = π ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12791278sumeq2dv 15343 . . . . . . . . . . . . . 14 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1280 fzfi 13620 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
12811280olci 862 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1282 sumz 15362 . . . . . . . . . . . . . . 15 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
12831281, 1282ax-mp 5 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)0 = 0
12841279, 1283eqtrdi 2795 . . . . . . . . . . . . 13 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12851254, 1284oveq12d 7273 . . . . . . . . . . . 12 (𝑠 = π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((π / 2) + 0))
12861285oveq1d 7270 . . . . . . . . . . 11 (𝑠 = π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((π / 2) + 0) / π))
1287 ovex 7288 . . . . . . . . . . 11 (((π / 2) + 0) / π) ∈ V
12881286, 1250, 1287fvmpt 6857 . . . . . . . . . 10 (π ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π))
12891253, 1288ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π)
1290 lbicc2 13125 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
129153, 54, 1248, 1290mp3an 1459 . . . . . . . . . 10 0 ∈ (0[,]π)
1292 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1293 2cn 11978 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
12941293, 238div0i 11639 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
12951292, 1294eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1296 oveq2 7263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
12971259mul01d 11104 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
12981296, 1297sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
12991298fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1300 sin0 15786 . . . . . . . . . . . . . . . . . . . 20 (sin‘0) = 0
13011299, 1300eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13021301oveq1d 7270 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
13031276adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13041302, 1303eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13051304sumeq2dv 15343 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
13061305, 1283eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13071295, 1306oveq12d 7273 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1308 00id 11080 . . . . . . . . . . . . . 14 (0 + 0) = 0
13091307, 1308eqtrdi 2795 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13101309oveq1d 7270 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13111310, 1202eqtrdi 2795 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1312 c0ex 10900 . . . . . . . . . . 11 0 ∈ V
13131311, 1250, 1312fvmpt 6857 . . . . . . . . . 10 (0 ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13141291, 1313ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
13151289, 1314oveq12i 7267 . . . . . . . 8 (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0)
13161315a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0))
13171019recni 10920 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
13181317addid1i 11092 . . . . . . . . . . . 12 ((π / 2) + 0) = (π / 2)
13191318oveq1i 7265 . . . . . . . . . . 11 (((π / 2) + 0) / π) = ((π / 2) / π)
13201155, 1293, 1155, 238, 1164divdiv32i 11660 . . . . . . . . . . 11 ((π / 2) / π) = ((π / π) / 2)
13211155, 1164dividi 11638 . . . . . . . . . . . 12 (π / π) = 1
13221321oveq1i 7265 . . . . . . . . . . 11 ((π / π) / 2) = (1 / 2)
13231319, 1320, 13223eqtri 2770 . . . . . . . . . 10 (((π / 2) + 0) / π) = (1 / 2)
13241323oveq1i 7265 . . . . . . . . 9 ((((π / 2) + 0) / π) − 0) = ((1 / 2) − 0)
1325 halfcn 12118 . . . . . . . . . 10 (1 / 2) ∈ ℂ
13261325subid1i 11223 . . . . . . . . 9 ((1 / 2) − 0) = (1 / 2)
13271324, 1326eqtri 2766 . . . . . . . 8 ((((π / 2) + 0) / π) − 0) = (1 / 2)
13281327a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((((π / 2) + 0) / π) − 0) = (1 / 2))
13291251, 1316, 13283eqtrd 2782 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
133014, 15, 258, 259, 261, 826, 263, 265, 267, 39, 40, 41, 818, 817, 837, 593, 839, 841, 26, 37, 1228, 1241, 6, 1242, 27, 1244, 1329fourierdlem95 43632 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13311219, 1330syldan 590 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13321205a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1333 fveq2 6756 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
13341333fveq1d 6758 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
13351334oveq2d 7271 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13361335adantr 480 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13371336itgeq2dv 24851 . . . . . . . 8 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13381337adantl 481 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
133914adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
134015adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
1341775adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13421340, 1341readdcld 10935 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
13431339, 1342ffvelrnd 6944 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13441343adantlr 711 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13451242dirkerf 43528 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
13461345ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐷𝑛):ℝ⟶ℝ)
1347775adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13481346, 1347ffvelrnd 6944 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13491344, 1348remulcld 10936 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
135014adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
135115adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1352210sseli 3913 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
13531352adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13541351, 1353readdcld 10935 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
13551350, 1354ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13561355adantlr 711 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13571345ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
13581352adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13591357, 1358ffvelrnd 6944 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13601356, 1359remulcld 10936 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
136147a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
13621242dirkercncf 43538 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
13631362adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1364 eqid 2738 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13651361, 1247, 825, 1166, 258, 831, 832, 833, 834, 835, 80, 836, 1363, 1364fourierdlem84 43621 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1366802, 804, 1360, 1365iblss 24874 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
13671349, 1366itgrecl 24867 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
13681332, 1338, 1142, 1367fvmptd 6864 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13691368eqcomd 2744 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13701219, 1369syldan 590 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13711227, 1331, 13703eqtrrd 2783 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)))
13721, 2, 1204, 1208, 1222, 1225, 1226, 1371climadd 15269 . 2 (𝜑𝑍 ⇝ (0 + (𝑌 / 2)))
13731213addid2d 11106 . 2 (𝜑 → (0 + (𝑌 / 2)) = (𝑌 / 2))
13741372, 1373breqtrd 5096 1 (𝜑𝑍 ⇝ (𝑌 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  csb 3828  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  cio 6374   Fn wfn 6413  wf 6414  cfv 6418   Isom wiso 6419  crio 7211  (class class class)co 7255  m cmap 8573  Fincfn 8691  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cz 12249  cuz 12511  +crp 12659  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311   mod cmo 13517  chash 13972  abscabs 14873  cli 15121  Σcsu 15325  sincsin 15701  πcpi 15704  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  intcnt 22076  cnccncf 23945  volcvol 24532  𝐿1cibl 24686  citg 24687   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem112  43649
  Copyright terms: Public domain W3C validator