Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem104 Structured version   Visualization version   GIF version

Theorem fourierdlem104 43758
Description: The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem104.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem104.xre (𝜑𝑋 ∈ ℝ)
fourierdlem104.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem104.m (𝜑𝑀 ∈ ℕ)
fourierdlem104.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem104.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem104.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem104.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem104.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem104.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem104.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem104.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem104.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem104.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem104.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem104.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem104.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem104.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem104.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
fourierdlem104.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem104.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem104.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem104.o 𝑂 = (𝑈 ↾ (𝑑[,]π))
fourierdlem104.t 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
fourierdlem104.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem104.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem104.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem104.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem104.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem104 (𝜑𝑍 ⇝ (𝑌 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠   𝑄,𝑓   𝑄,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑊,𝑠   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑖,𝑌,𝑘,𝑙,𝑠,𝑡   𝑚,𝑌,𝑛,𝑖   𝑤,𝑌,𝑧   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑒,𝑓,𝑝,𝑑)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem104
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12360 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1918 . . . . 5 𝑛𝜑
4 nfmpt1 5183 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
5 nfmpt1 5183 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem104.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5183 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2906 . . . . 5 𝑛𝐸
9 nnuz 12630 . . . . 5 ℕ = (ℤ‘1)
10 elioore 13118 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (0(,)π) → 𝑑 ∈ ℝ)
1110adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ ℝ)
12 pire 25624 . . . . . . . . . . . . . . . 16 π ∈ ℝ
1312a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ ℝ)
14 fourierdlem104.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
15 fourierdlem104.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
16 ioossre 13149 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1716a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1814, 17fssresd 6650 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
19 ioosscn 13150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
21 eqid 2739 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
22 pnfxr 11038 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2415ltpnfd 12866 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2521, 23, 15, 24lptioo1cn 43194 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
26 fourierdlem104.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2718, 20, 25, 26limcrecl 43177 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
28 ioossre 13149 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3014, 29fssresd 6650 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
31 ioosscn 13150 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3231a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
33 mnfxr 11041 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3515mnfltd 12869 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3621, 34, 15, 35lptioo2cn 43193 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
37 fourierdlem104.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3830, 32, 36, 37limcrecl 43177 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
39 fourierdlem104.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
40 fourierdlem104.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
41 fourierdlem104.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4214, 15, 27, 38, 39, 40, 41fourierdlem55 43709 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
43 ax-resscn 10937 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4542, 44fssd 6627 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4645adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℂ)
4712renegcli 11291 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4847a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ∈ ℝ)
4947a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π ∈ ℝ)
50 0red 10987 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 ∈ ℝ)
51 negpilt0 42826 . . . . . . . . . . . . . . . . . . . . . 22 -π < 0
5251a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → -π < 0)
53 0xr 11031 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
5412rexri 11042 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ ℝ*
55 ioogtlb 43040 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 0 < 𝑑)
5653, 54, 55mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → 0 < 𝑑)
5749, 50, 10, 52, 56lttrd 11145 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → -π < 𝑑)
5849, 10, 57ltled 11132 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → -π ≤ 𝑑)
5958adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → -π ≤ 𝑑)
6013leidd 11550 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → π ≤ π)
61 iccss 13156 . . . . . . . . . . . . . . . . . 18 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 𝑑 ∧ π ≤ π)) → (𝑑[,]π) ⊆ (-π[,]π))
6248, 13, 59, 60, 61syl22anc 836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ (-π[,]π))
6346, 62fssresd 6650 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ)
64 fourierdlem104.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (𝑑[,]π))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑈 ↾ (𝑑[,]π)))
6665feq1d 6594 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (𝑂:(𝑑[,]π)⟶ℂ ↔ (𝑈 ↾ (𝑑[,]π)):(𝑑[,]π)⟶ℂ))
6763, 66mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂:(𝑑[,]π)⟶ℂ)
68 fourierdlem104.n . . . . . . . . . . . . . . . . . 18 𝑁 = ((♯‘𝑇) − 1)
6912elexi 3452 . . . . . . . . . . . . . . . . . . . . . . . . 25 π ∈ V
7069prid2 4700 . . . . . . . . . . . . . . . . . . . . . . . 24 π ∈ {𝑑, π}
71 elun1 4111 . . . . . . . . . . . . . . . . . . . . . . . 24 (π ∈ {𝑑, π} → π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 π ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
73 fourierdlem104.t . . . . . . . . . . . . . . . . . . . . . . 23 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
7472, 73eleqtrri 2839 . . . . . . . . . . . . . . . . . . . . . 22 π ∈ 𝑇
7574ne0ii 4272 . . . . . . . . . . . . . . . . . . . . 21 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑇 ≠ ∅)
77 prfi 9098 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑑, π} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑑, π} ∈ Fin)
79 fzfi 13701 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0...𝑀) ∈ Fin
80 fourierdlem104.q . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 42714 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ran 𝑄 ∈ Fin
83 infi 9052 . . . . . . . . . . . . . . . . . . . . . . . 24 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
8482, 83mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin)
85 unfi 8964 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑑, π} ∈ Fin ∧ (ran 𝑄 ∩ (𝑑(,)π)) ∈ Fin) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8678, 84, 85syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ∈ Fin)
8773, 86eqeltrid 2844 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ Fin)
88 hashnncl 14090 . . . . . . . . . . . . . . . . . . . . 21 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
8987, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9076, 89mpbird 256 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝑇) ∈ ℕ)
91 nnm1nn0 12283 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9368, 92eqeltrid 2844 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
9493adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ0)
95 0red 10987 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 ∈ ℝ)
96 1red 10985 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ∈ ℝ)
9794nn0red 12303 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℝ)
98 0lt1 11506 . . . . . . . . . . . . . . . . . . 19 0 < 1
9998a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 1)
100 2re 12056 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
101100a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ∈ ℝ)
10290nnred 11997 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝑇) ∈ ℝ)
103102adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘𝑇) ∈ ℝ)
104 iooltub 43055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑑 ∈ (0(,)π)) → 𝑑 < π)
10553, 54, 104mp3an12 1450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (0(,)π) → 𝑑 < π)
10610, 105ltned 11120 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → 𝑑 ≠ π)
107106adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≠ π)
108 hashprg 14119 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
10911, 12, 108sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ≠ π ↔ (♯‘{𝑑, π}) = 2))
110107, 109mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) = 2)
111110eqcomd 2745 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 2 = (♯‘{𝑑, π}))
11287adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ∈ Fin)
113 ssun1 4107 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑑, π} ⊆ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
114113, 73sseqtrri 3959 . . . . . . . . . . . . . . . . . . . . . 22 {𝑑, π} ⊆ 𝑇
115 hashssle 42844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇 ∈ Fin ∧ {𝑑, π} ⊆ 𝑇) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
116112, 114, 115sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (♯‘{𝑑, π}) ≤ (♯‘𝑇))
117111, 116eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 2 ≤ (♯‘𝑇))
118101, 103, 96, 117lesub1dd 11600 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
119 1e2m1 12109 . . . . . . . . . . . . . . . . . . 19 1 = (2 − 1)
120118, 119, 683brtr4g 5109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 1 ≤ 𝑁)
12195, 96, 97, 99, 120ltletrd 11144 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 0 < 𝑁)
122121gt0ne0d 11548 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ≠ 0)
123 elnnne0 12256 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
12494, 122, 123sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝑁 ∈ ℕ)
125 fourierdlem104.j . . . . . . . . . . . . . . . . 17 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12611leidd 11550 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑑)
12712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (0(,)π) → π ∈ ℝ)
12810, 127, 105ltled 11132 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → 𝑑 ≤ π)
129128adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ≤ π)
13011, 13, 11, 126, 129eliccd 43049 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 ∈ (𝑑[,]π))
13111, 13, 13, 129, 60eliccd 43049 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ (𝑑[,]π))
132130, 131jca 512 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)))
133 vex 3437 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
134133, 69prss 4754 . . . . . . . . . . . . . . . . . . . 20 ((𝑑 ∈ (𝑑[,]π) ∧ π ∈ (𝑑[,]π)) ↔ {𝑑, π} ⊆ (𝑑[,]π))
135132, 134sylib 217 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ (𝑑[,]π))
136 inss2 4164 . . . . . . . . . . . . . . . . . . . . 21 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π)
137136a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑(,)π))
138 ioossicc 13174 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)π) ⊆ (𝑑[,]π)
139137, 138sstrdi 3934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ (𝑑[,]π))
140135, 139unssd 4121 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ (𝑑[,]π))
14173, 140eqsstrid 3970 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ (𝑑[,]π))
142133prid1 4699 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ {𝑑, π}
143 elun1 4111 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ {𝑑, π} → 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))))
144142, 143ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑑 ∈ ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))
145144, 73eleqtrri 2839 . . . . . . . . . . . . . . . . . 18 𝑑𝑇
146145a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑𝑇)
14774a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → π ∈ 𝑇)
148112, 68, 125, 11, 13, 141, 146, 147fourierdlem52 43706 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ((𝐽:(0...𝑁)⟶(𝑑[,]π) ∧ (𝐽‘0) = 𝑑) ∧ (𝐽𝑁) = π))
149148simplld 765 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
150148simplrd 767 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽‘0) = 𝑑)
151148simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → (𝐽𝑁) = π)
152 elfzoelz 13396 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
153152zred 12435 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
154153adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
155154ltp1d 11914 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15610, 127jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (0(,)π) → (𝑑 ∈ ℝ ∧ π ∈ ℝ))
157133, 69prss 4754 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) ↔ {𝑑, π} ⊆ ℝ)
158156, 157sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → {𝑑, π} ⊆ ℝ)
159158adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → {𝑑, π} ⊆ ℝ)
160 ioossre 13149 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑(,)π) ⊆ ℝ
161136, 160sstri 3931 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ
162161a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (ran 𝑄 ∩ (𝑑(,)π)) ⊆ ℝ)
163159, 162unssd 4121 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) ⊆ ℝ)
16473, 163eqsstrid 3970 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝑇 ⊆ ℝ)
165112, 164, 125, 68fourierdlem36 43691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
166165adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
167 elfzofz 13412 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
168167adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
169 fzofzp1 13493 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
170169adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
171 isorel 7206 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
172166, 168, 170, 171syl12anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
173155, 172mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17442adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
175174, 62feqresmpt 6847 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑈 ↾ (𝑑[,]π)) = (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)))
17662sselda 3922 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
17714, 15, 27, 38, 39fourierdlem9 43664 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
178177ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐻:(-π[,]π)⟶ℝ)
179178, 176ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) ∈ ℝ)
18040fourierdlem43 43698 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
181180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐾:(-π[,]π)⟶ℝ)
182181, 176ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) ∈ ℝ)
183179, 182remulcld 11014 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18441fvmpt2 6895 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
185176, 183, 184syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
186 0red 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 ∈ ℝ)
18710adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ)
18812a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ)
189 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (𝑑[,]π))
190 eliccre 43050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
191187, 188, 189, 190syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
19256adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑑)
193187rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑 ∈ ℝ*)
19454a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → π ∈ ℝ*)
195 iccgelb 13144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
196193, 194, 189, 195syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑑𝑠)
197186, 187, 191, 192, 196ltletrd 11144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
198197gt0ne0d 11548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
199198adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≠ 0)
200199neneqd 2949 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
201200iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
202197adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 0 < 𝑠)
203202iftrued 4468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
204203oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
205204oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
206201, 205eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
20714ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝐹:ℝ⟶ℝ)
20815ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑋 ∈ ℝ)
209 iccssre 13170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21047, 12, 209mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
211210, 176sselid 3920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℝ)
212208, 211readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
213207, 212ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21427ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑌 ∈ ℝ)
215213, 214resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℝ)
216215, 211, 199redivcld 11812 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ ℝ)
217206, 216eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
21839fvmpt2 6895 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
219176, 217, 218syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
220219, 201, 2053eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
221188renegcld 11411 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ∈ ℝ)
22251a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 0)
223221, 186, 191, 222, 197lttrd 11145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π < 𝑠)
224221, 191, 223ltled 11132 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → -π ≤ 𝑠)
225 iccleub 13143 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
226193, 194, 189, 225syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ≤ π)
227221, 188, 191, 224, 226eliccd 43049 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ (-π[,]π))
228198neneqd 2949 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → ¬ 𝑠 = 0)
229228iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
230100a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℝ)
231191rehalfcld 12229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℝ)
232231resincld 15861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℝ)
233230, 232remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
234 2cnd 12060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
235191recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
236235halfcld 12227 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
237236sincld 15848 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
238 2ne0 12086 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
239238a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ≠ 0)
240 fourierdlem44 43699 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
241227, 198, 240syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ≠ 0)
242234, 237, 239, 241mulne0d 11636 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
243191, 233, 242redivcld 11812 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
244229, 243eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
24540fvmpt2 6895 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
246227, 244, 245syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (0(,)π) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
247246adantll 711 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
248220, 247oveq12d 7302 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
249200iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
250249oveq2d 7300 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
251185, 248, 2503eqtrd 2783 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252251mpteq2dva 5175 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ (𝑈𝑠)) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25365, 175, 2523eqtrd 2783 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
254253adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255254reseq1d 5893 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
25614adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
25715adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
258 fourierdlem104.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
259 fourierdlem104.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
260259adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑀 ∈ ℕ)
261 fourierdlem104.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
262261adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑉 ∈ (𝑃𝑀))
263 fourierdlem104.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
264263adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
265 fourierdlem104.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
266265adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
267 fourierdlem104.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
268267adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
269105adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 < π)
27050, 10ltnled 11131 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (0(,)π) → (0 < 𝑑 ↔ ¬ 𝑑 ≤ 0))
27156, 270mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (0(,)π) → ¬ 𝑑 ≤ 0)
272271intn3an2d 1479 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → ¬ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π))
273 elicc2 13153 . . . . . . . . . . . . . . . . . . . . 21 ((𝑑 ∈ ℝ ∧ π ∈ ℝ) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
27410, 12, 273sylancl 586 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (0(,)π) → (0 ∈ (𝑑[,]π) ↔ (0 ∈ ℝ ∧ 𝑑 ≤ 0 ∧ 0 ≤ π)))
275272, 274mtbird 325 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (0(,)π) → ¬ 0 ∈ (𝑑[,]π))
276275adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ¬ 0 ∈ (𝑑[,]π))
27727adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → 𝑌 ∈ ℝ)
278 eqid 2739 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
279 eqid 2739 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
280 eqid 2739 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
281 fveq2 6783 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
282 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
283282fveq2d 6787 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
284281, 283oveq12d 7302 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
285284sseq2d 3954 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
286285cbvriotavw 7251 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
287256, 257, 258, 260, 262, 264, 266, 268, 11, 13, 269, 62, 276, 277, 278, 80, 73, 68, 125, 279, 280, 286fourierdlem86 43740 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
288287simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
289255, 288eqeltrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
290287simplld 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
291254eqcomd 2745 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
292291reseq1d 5893 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
293292oveq1d 7299 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
294290, 293eleqtrd 2842 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295287simplrd 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
296292oveq1d 7299 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
297295, 296eleqtrd 2842 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
298 eqid 2739 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
29967adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(𝑑[,]π)⟶ℂ)
30011ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
30112a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → π ∈ ℝ)
302 elioore 13118 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
303302adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30462, 210sstrdi 3934 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) ⊆ ℝ)
305304adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ ℝ)
306149adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(𝑑[,]π))
307306, 168ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (𝑑[,]π))
308305, 307sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
309308adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31011adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
311310rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
31254a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ*)
313 iccgelb 13144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽𝑘) ∈ (𝑑[,]π)) → 𝑑 ≤ (𝐽𝑘))
314311, 312, 307, 313syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ≤ (𝐽𝑘))
315314adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ≤ (𝐽𝑘))
316309rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
317306, 170ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π))
318305, 317sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
319318rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
320319adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
321 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
322 ioogtlb 43040 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
323316, 320, 321, 322syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
324300, 309, 303, 315, 323lelttrd 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 < 𝑠)
325300, 303, 324ltled 11132 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑𝑠)
326318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
327 iooltub 43055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
328316, 320, 321, 327syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
329 iccleub 13143 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (𝑑[,]π)) → (𝐽‘(𝑘 + 1)) ≤ π)
330311, 312, 317, 329syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ π)
331330adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ π)
332303, 326, 301, 328, 331ltletrd 11144 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < π)
333303, 301, 332ltled 11132 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ≤ π)
334300, 301, 303, 325, 333eliccd 43049 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (𝑑[,]π))
335334ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
336 dfss3 3910 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (𝑑[,]π))
337335, 336sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
338299, 337feqresmpt 6847 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
339 simplll 772 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
340 simpllr 773 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (0(,)π))
34164fveq1i 6784 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠)
342341a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = ((𝑈 ↾ (𝑑[,]π))‘𝑠))
343 fvres 6802 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (𝑑[,]π) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
344343adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
345247, 249eqtrd 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
346220, 345oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
347215recnd 11012 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑌) ∈ ℂ)
348235adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 𝑠 ∈ ℂ)
349 2cnd 12060 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → 2 ∈ ℂ)
350348halfcld 12227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑠 / 2) ∈ ℂ)
351350sincld 15848 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (sin‘(𝑠 / 2)) ∈ ℂ)
352349, 351mulcld 11004 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
353242adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
354347, 348, 352, 199, 353dmdcan2d 11790 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
355185, 346, 3543eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
356342, 344, 3553eqtrd 2783 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑[,]π)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
357339, 340, 334, 356syl21anc 835 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
358339, 340, 334, 354syl21anc 835 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
359358eqcomd 2745 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
360 eqidd 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)))
361 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
362361fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
363362oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑌) = ((𝐹‘(𝑋 + 𝑠)) − 𝑌))
364 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
365363, 364oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
366365adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
367 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
368 ovex 7317 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V
369368a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) ∈ V)
370360, 366, 367, 369fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
371 eqidd 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
372 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
373372fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
374373oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
375364, 374oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
376375adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
377 ovex 7317 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
378377a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
379371, 376, 367, 378fvmptd 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380370, 379oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
381380eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
382381adantllr 716 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
383357, 359, 3823eqtrd 2783 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
384383mpteq2dva 5175 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
385338, 384eqtr2d 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
386385oveq2d 7300 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
38743a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
388337, 305sstrd 3932 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
38921tgioo2 23975 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39021, 389dvres 25084 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(𝑑[,]π)⟶ℂ) ∧ ((𝑑[,]π) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
391387, 299, 305, 388, 390syl22anc 836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
392 ioontr 43056 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
393392a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
394393reseq2d 5894 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
395386, 391, 3943eqtrrd 2784 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
39614ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
39715ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
398259ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
399261ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
400 fourierdlem104.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
401400ad4ant14 749 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40262adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑑[,]π) ⊆ (-π[,]π))
403337, 402sstrd 3932 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
40453a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
405 0red 10987 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
40656ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < 𝑑)
407405, 310, 308, 406, 314ltletrd 11144 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 < (𝐽𝑘))
408308, 319, 404, 407ltnelicc 43042 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
40927ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑌 ∈ ℝ)
41012a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
411269adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < π)
412 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
413 biid 260 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
414397, 258, 398, 399, 310, 410, 411, 402, 80, 73, 68, 125, 412, 286, 413fourierdlem50 43704 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
415414simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
416414simprd 496 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
417365cbvmptv 5188 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠))
418375cbvmptv 5188 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419 eqid 2739 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
420396, 397, 258, 398, 399, 401, 308, 318, 173, 403, 408, 409, 80, 415, 416, 417, 418, 419fourierdlem72 43726 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
421395, 420eqeltrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
422 eqid 2739 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
423 eqid 2739 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
424 fourierdlem104.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
425424, 415eqeltrid 2844 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
426 simpll 764 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
427426, 425jca 512 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
428 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
429428anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
430 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
431 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
432431fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
433430, 432oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
434 raleq 3343 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
435433, 434syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
436435rexbidv 3227 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
437429, 436imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
438 fourierdlem104.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
439437, 438vtoclg 3506 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440425, 427, 439sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
441 nfv 1918 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁))
442 nfra1 3145 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
443441, 442nfan 1903 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444 simplr 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
44547a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
446445, 15readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
44712a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
448447, 15readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
449446, 448iccssred 13175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
450 ressxr 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
451449, 450sstrdi 3934 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
452451ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
453258, 398, 399fourierdlem15 43670 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
454 elfzofz 13412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
455425, 454syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
456453, 455ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
457452, 456sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
458457adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
459 fzofzp1 13493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
460425, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
461453, 460ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462452, 461sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
463462adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
464 elioore 13118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
465464adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
46647a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
467466, 410, 397, 258, 398, 399, 455, 80fourierdlem13 43668 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
468467simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
469468adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
470449ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
471470, 456sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
472471adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
473469, 472eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
474397, 308readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
475474adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
476467simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
477471, 397resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
478476, 477eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
479466, 410, 397, 258, 398, 399, 460, 80fourierdlem13 43668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
480479simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
481470, 461sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
482481, 397resubcld 11412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
483480, 482eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
484424eqcomi 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
485484fveq2i 6786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
486484oveq1i 7294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
487486fveq2i 6786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
488485, 487oveq12i 7296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
489416, 488sseqtrdi 3972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
490478, 483, 308, 318, 173, 489fourierdlem10 43665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
491490simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
492478, 308, 397, 491leadd2dd 11599 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
493492adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
494475rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
495397, 318readdcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
496495rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
497496adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
498 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
499 ioogtlb 43040 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
500494, 497, 498, 499syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
501473, 475, 465, 493, 500lelttrd 11142 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
502469, 501eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
503495adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
504479simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
505504, 481eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
506505adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
507 iooltub 43055 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
508494, 497, 498, 507syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
509490simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
510318, 483, 397, 509leadd2dd 11599 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
511510adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
512465, 503, 506, 508, 511ltletrd 11144 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
513504eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
514513adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
515512, 514breqtrd 5101 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
516458, 463, 465, 502, 515eliood 43043 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
517516adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
518 rspa 3133 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
519444, 517, 518syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
520519ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
521443, 520ralrimi 3142 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
522521ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
523522reximdv 3203 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
524440, 523mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
525433raleqdv 3349 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
526525rexbidv 3227 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
527429, 526imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
528 fourierdlem104.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
529527, 528vtoclg 3506 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
530425, 427, 529sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
531 nfra1 3145 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
532441, 531nfan 1903 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53314, 44fssd 6627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
534 ssid 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
535534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
536 ioossre 13149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
537536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
53821, 389dvres 25084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
53944, 533, 535, 537, 538syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
540 ioontr 43056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
541540reseq2i 5891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
542539, 541eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
543542fveq1d 6785 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
544 fvres 6802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
545543, 544sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
546545ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
547546fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
548547adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
549 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
550516adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
551 rspa 3133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
552549, 550, 551syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
553548, 552eqbrtrd 5097 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
554553ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
555532, 554ralrimi 3142 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
556555ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
557556reximdv 3203 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
558530, 557mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
559311, 312, 306, 412fourierdlem8 43663 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (𝑑[,]π))
560124ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
561149, 304fssd 6627 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → 𝐽:(0...𝑁)⟶ℝ)
562561ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
563 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ (𝑑[,]π))
564150eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → 𝑑 = (𝐽‘0))
565151eqcomd 2745 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → π = (𝐽𝑁))
566564, 565oveq12d 7302 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
567566adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → (𝑑[,]π) = ((𝐽‘0)[,](𝐽𝑁)))
568563, 567eleqtrd 2842 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
569568adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
570 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
571 fveq2 6783 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
572571breq1d 5085 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
573572cbvrabv 3427 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
574573supeq1i 9215 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
575560, 562, 569, 570, 574fourierdlem25 43680 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑟 ∈ (𝑑[,]π)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
576533ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
577534a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
578536a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
579387, 576, 577, 578, 538syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
580516ralrimiva 3104 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
581 dfss3 3910 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
582580, 581sylibr 233 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
583 resabs2 5926 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584582, 583syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
585541, 579, 5843eqtr4a 2805 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
586582resabs1d 5925 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
587586eqcomd 2745 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
588585, 584, 5873eqtrrd 2784 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
589433reseq2d 5894 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
590589, 433feq12d 6597 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
591429, 590imbi12d 345 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
592 cncff 24065 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
593400, 592syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
594591, 593vtoclg 3506 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
595594anabsi7 668 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
596427, 595syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
597596, 582fssresd 6650 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
598588, 597feq1dd 42710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
599363, 374oveq12d 7302 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
600599cbvmptv 5188 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑌) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
601 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
602601fveq2d 6787 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
603602breq1d 5085 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
604603cbvralvw 3384 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
605604anbi2i 623 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
606 fveq2 6783 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
607606fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
608607breq1d 5085 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
609608cbvralvw 3384 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
610605, 609anbi12i 627 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
611256, 257, 11, 13, 62, 276, 277, 422, 423, 524, 558, 149, 173, 559, 575, 598, 600, 610fourierdlem80 43734 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
612354mpteq2dva 5175 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (0(,)π)) → (𝑠 ∈ (𝑑[,]π) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑌) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
613253, 612eqtrd 2779 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → 𝑂 = (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
614613oveq2d 7300 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
615614dmeqd 5817 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))))
616 nfcv 2908 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
617 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
618 nfcv 2908 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
619 nfmpt1 5183 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))
620617, 618, 619nfov 7314 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
621620nfdm 5863 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))
622616, 621raleqf 3333 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
623615, 622syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
624614fveq1d 6785 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (0(,)π)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
625624fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (0(,)π)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
626625breq1d 5085 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
627626ralbidv 3113 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
628623, 627bitrd 278 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (0(,)π)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
629628rexbidv 3227 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (0(,)π)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (𝑑[,]π) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑌) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
630611, 629mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (0(,)π)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
631 eqid 2739 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
632 eqeq1 2743 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
633 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
634 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
635634fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
636633, 635oveq12d 7302 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
637636sseq2d 3954 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
638637cbvriotavw 7251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
639638fveq2i 6786 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
640639eqeq2i 2752 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
641640a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
642 csbeq1 3836 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
643638, 642mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
644641, 643ifbieq1d 4484 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
645644mptru 1546 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
646645oveq1i 7294 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌)
647646oveq1i 7294 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘))
648647oveq1i 7294 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
649648a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
650 eqeq1 2743 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
651638oveq1i 7294 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
652651fveq2i 6786 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
653652eqeq2i 2752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
654653a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
655 csbeq1 3836 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
656638, 655mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
657654, 656ifbieq1d 4484 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
658657mptru 1546 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
659658oveq1i 7294 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌)
660659oveq1i 7294 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1)))
661660oveq1i 7294 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
662661a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
663 fveq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
664650, 662, 663ifbieq12d 4488 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
665632, 649, 664ifbieq12d 4488 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
666665cbvmptv 5188 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑌) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑌) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
66711, 13, 67, 124, 149, 150, 151, 173, 289, 294, 297, 298, 421, 630, 631, 666fourierdlem73 43727 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
668 breq2 5079 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
669668rexralbidv 3231 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
670669cbvralvw 3384 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
671667, 670sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
672671adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
673 rphalfcl 12766 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
674673ad2antlr 724 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (𝑒 / 2) ∈ ℝ+)
675 breq2 5079 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
676675rexralbidv 3231 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
677676rspccva 3561 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
678672, 674, 677syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
679138a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (0(,)π)) → (𝑑(,)π) ⊆ (𝑑[,]π))
680679sselda 3922 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (𝑑[,]π))
681680, 343syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈 ↾ (𝑑[,]π))‘𝑠) = (𝑈𝑠))
682341, 681eqtr2id 2792 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → (𝑈𝑠) = (𝑂𝑠))
683682oveq1d 7299 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (0(,)π)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
684683itgeq2dv 24955 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (0(,)π)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
685684adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
686685fveq2d 6787 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
687 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688686, 687eqbrtrd 5097 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (0(,)π)) ∧ (abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
689688ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
690689adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ((abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
691690ralimdv 3110 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
692691reximdv 3203 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
693678, 692mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
694693adantr 481 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
695 nfv 1918 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π))
696 nfra1 3145 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
697695, 696nfan 1903 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
698 nfv 1918 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
699697, 698nfan 1903 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
700 nfv 1918 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
701699, 700nfan 1903 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
702 simpll 764 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)))
703 eluznn 12667 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
704703adantll 711 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
705702, 704jca 512 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
706705adantllr 716 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ))
707 simpllr 773 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708703adantll 711 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
709 rspa 3133 . . . . . . . . . . . . . . . . . 18 ((∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
710707, 708, 709syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
711706, 710jca 512 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
712711adantlr 712 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
713 nnre 11989 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
714713rexrd 11034 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
715714adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
71622a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
717 eluzelre 12602 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
718 halfre 12196 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 2) ∈ ℝ
719718a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
720717, 719readdcld 11013 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
721720adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
722713adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
723717adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
724 eluzle 12604 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
725724adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
726 halfgt0 12198 . . . . . . . . . . . . . . . . . . . . . 22 0 < (1 / 2)
727726a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
728718a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
729728, 723ltaddposd 11568 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
730727, 729mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
731722, 723, 721, 725, 730lelttrd 11142 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
732721ltpnfd 12866 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
733715, 716, 721, 731, 732eliood 43043 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
734733adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
735 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
736 oveq1 7291 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
737736fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
738737oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
739738adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
740739itgeq2dv 24955 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
741740fveq2d 6787 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
742741breq1d 5085 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
743742rspcv 3558 . . . . . . . . . . . . . . . . 17 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
744734, 735, 743sylc 65 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
745744adantlll 715 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
746 fourierdlem104.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
747712, 745, 746sylanbrc 583 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
748 0red 10987 . . . . . . . . . . . . . . . . 17 (𝜒 → 0 ∈ ℝ)
74912a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → π ∈ ℝ)
750 ioossicc 13174 . . . . . . . . . . . . . . . . . 18 (0(,)π) ⊆ (0[,]π)
751746biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
752 simp-4r 781 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (0(,)π))
753751, 752syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (0(,)π))
754750, 753sselid 3920 . . . . . . . . . . . . . . . . 17 (𝜒𝑑 ∈ (0[,]π))
755 simp-5l 782 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
756751, 755syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
75742adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑈:(-π[,]π)⟶ℝ)
75847rexri 11042 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ*
759 0re 10986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
76047, 759, 51ltleii 11107 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ≤ 0
761 iooss1 13123 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ* ∧ -π ≤ 0) → (0(,)π) ⊆ (-π(,)π))
762758, 760, 761mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . 24 (0(,)π) ⊆ (-π(,)π)
763 ioossicc 13174 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π[,]π)
764762, 763sstri 3931 . . . . . . . . . . . . . . . . . . . . . . 23 (0(,)π) ⊆ (-π[,]π)
765764sseli 3918 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (-π[,]π))
766765adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
767757, 766ffvelrnd 6971 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
768756, 767sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
769 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
770751, 769syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℕ)
771770nnred 11997 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑘 ∈ ℝ)
772718a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (1 / 2) ∈ ℝ)
773771, 772readdcld 11013 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
774773adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → (𝑘 + (1 / 2)) ∈ ℝ)
775 elioore 13118 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ℝ)
776775adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
777774, 776remulcld 11014 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
778777resincld 15861 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)π)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
779768, 778remulcld 11014 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
780779recnd 11012 . . . . . . . . . . . . . . . . 17 ((𝜒𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
78153a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ∈ ℝ*)
78254a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ∈ ℝ*)
783748leidd 11550 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 0)
784 ioossre 13149 . . . . . . . . . . . . . . . . . . . . 21 (0(,)π) ⊆ ℝ
785784, 753sselid 3920 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ∈ ℝ)
786781, 782, 753, 104syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 < π)
787785, 749, 786ltled 11132 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ≤ π)
788 ioossioo 13182 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ π)) → (0(,)𝑑) ⊆ (0(,)π))
789781, 782, 783, 787, 788syl22anc 836 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ⊆ (0(,)π))
790 ioombl 24738 . . . . . . . . . . . . . . . . . . 19 (0(,)𝑑) ∈ dom vol
791790a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (0(,)𝑑) ∈ dom vol)
792 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
793792anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
794 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → 𝑛 = 𝑘)
795794oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
796795oveq1d 7299 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
797796fveq2d 6787 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
798797oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 = 𝑘𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
799798mpteq2dva 5175 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
800799eleq1d 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
801793, 800imbi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
802764a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ⊆ (-π[,]π))
803 ioombl 24738 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)π) ∈ dom vol
804803a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (0(,)π) ∈ dom vol)
80542ffvelrnda 6970 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
806805adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
807 nnre 11989 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
808 readdcl 10963 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
809807, 718, 808sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
810809adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
811 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
812210, 811sselid 3920 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
813810, 812remulcld 11014 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
814813resincld 15861 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
815814adantll 711 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
816806, 815remulcld 11014 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
817 fourierdlem104.g . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
818 fourierdlem104.s . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
819818fvmpt2 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
820811, 814, 819syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
821820adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
822821oveq2d 7300 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
823822mpteq2dva 5175 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
824817, 823eqtr2id 2792 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
82514adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
826 fourierdlem104.x . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ ran 𝑉)
827826adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
82826adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
82937adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
830807adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
831259adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
832261adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
833263adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
834265adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
835267adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
836 eqid 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
837 eqid 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D 𝐹) = (ℝ D 𝐹)
838593adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
839 fourierdlem104.a . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
840839adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
841 fourierdlem104.b . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
842841adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
843258, 825, 827, 828, 829, 39, 40, 41, 830, 818, 817, 831, 832, 833, 834, 835, 80, 836, 837, 838, 840, 842fourierdlem88 43742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
844824, 843eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
845802, 804, 816, 844iblss 24978 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
846801, 845chvarvv 2003 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
847756, 770, 846syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (0(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
848789, 791, 779, 847iblss 24978 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (0(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
849781, 782, 753, 55syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 < 𝑑)
850748, 785, 849ltled 11132 . . . . . . . . . . . . . . . . . . 19 (𝜒 → 0 ≤ 𝑑)
851749leidd 11550 . . . . . . . . . . . . . . . . . . 19 (𝜒 → π ≤ π)
852 ioossioo 13182 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ* ∧ π ∈ ℝ*) ∧ (0 ≤ 𝑑 ∧ π ≤ π)) → (𝑑(,)π) ⊆ (0(,)π))
853781, 782, 850, 851, 852syl22anc 836 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ⊆ (0(,)π))
854 ioombl 24738 . . . . . . . . . . . . . . . . . . 19 (𝑑(,)π) ∈ dom vol
855854a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑑(,)π) ∈ dom vol)
856853, 855, 779, 847iblss 24978 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑠 ∈ (𝑑(,)π) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
857748, 749, 754, 780, 848, 856itgsplitioo 25011 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
858857fveq2d 6787 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
859789sselda 3922 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (0(,)𝑑)) → 𝑠 ∈ (0(,)π))
860859, 779syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (0(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
861860, 848itgcl 24957 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
862853sselda 3922 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)π)) → 𝑠 ∈ (0(,)π))
863862, 779syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)π)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
864863, 856itgcl 24957 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
865861, 864addcld 11003 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
866865abscld 15157 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
867861abscld 15157 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
868864abscld 15157 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
869867, 868readdcld 11013 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
870 simp-5r 783 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
871751, 870syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
872871rpred 12781 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
873861, 864abstrid 15177 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
874751simplrd 767 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
875751simprd 496 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
876867, 868, 872, 874, 875lt2halvesd 12230 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
877866, 869, 872, 873, 876lelttrd 11142 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
878858, 877eqbrtrd 5097 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
879747, 878syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
880879ex 413 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
881701, 880ralrimi 3142 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
882881ex 413 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
883882reximdva 3204 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
884694, 883mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
885 pipos 25626 . . . . . . . . . . . . . 14 0 < π
88647, 759, 12lttri 11110 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
88751, 885, 886mp2an 689 . . . . . . . . . . . . 13 -π < π
88847, 12, 887ltleii 11107 . . . . . . . . . . . 12 -π ≤ π
889888a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
890258fourierdlem2 43657 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
891259, 890syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
892261, 891mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
893892simpld 495 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
894 elmapi 8646 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
895893, 894syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
896895ffvelrnda 6970 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
89715adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
898896, 897resubcld 11412 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
899898, 80fmptd 6997 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
90080a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
901 fveq2 6783 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
902901oveq1d 7299 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
903902adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
904259nnnn0d 12302 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
905 nn0uz 12629 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
906904, 905eleqtrdi 2850 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
907 eluzfz1 13272 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
908906, 907syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
909895, 908ffvelrnd 6971 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
910909, 15resubcld 11412 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
911900, 903, 908, 910fvmptd 6891 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
912892simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
913912simplld 765 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
914913oveq1d 7299 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
915445recnd 11012 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
91615recnd 11012 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
917915, 916pncand 11342 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
918911, 914, 9173eqtrd 2783 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
919445, 447, 15, 258, 836, 259, 261, 80fourierdlem14 43669 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
920836fourierdlem2 43657 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
921259, 920syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
922919, 921mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
923922simprd 496 . . . . . . . . . . . 12 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
924923simplrd 767 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
925923simprd 496 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
926925r19.21bi 3135 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
92714adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
928836, 259, 919fourierdlem15 43670 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
929928adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
930 elfzofz 13412 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
931930adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
932929, 931ffvelrnd 6971 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
933 fzofzp1 13493 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
934933adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
935929, 934ffvelrnd 6971 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
93615adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
937 ffn 6609 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
938893, 894, 9373syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
939 fvelrnb 6839 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
940938, 939syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
941826, 940mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
942 oveq1 7291 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
943942adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
944916subidd 11329 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
945944ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
946943, 945eqtr2d 2780 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
947946ex 413 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
948947reximdva 3204 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
949941, 948mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
95080elrnmpt 5868 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
951759, 950ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
952949, 951sylibr 233 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
953836, 259, 919, 952fourierdlem12 43667 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
954895adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
955954, 931ffvelrnd 6971 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
956955, 936resubcld 11412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
95780fvmpt2 6895 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
958931, 956, 957syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
959958oveq1d 7299 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
960955recnd 11012 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
961916adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
962960, 961npcand 11345 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
963959, 962eqtrd 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
964 fveq2 6783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
965964oveq1d 7299 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
966965cbvmptv 5188 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
96780, 966eqtr4i 2770 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
968967a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
969 fveq2 6783 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
970969oveq1d 7299 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
971970adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
972954, 934ffvelrnd 6971 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
973972, 936resubcld 11412 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
974968, 971, 934, 973fvmptd 6891 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
975974oveq1d 7299 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
976972recnd 11012 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
977976, 961npcand 11345 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
978975, 977eqtrd 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
979963, 978oveq12d 7302 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
980979reseq2d 5894 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
981979oveq1d 7299 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
982263, 980, 9813eltr4d 2855 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
98327adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
98438adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
985927, 932, 935, 936, 953, 982, 983, 984, 39fourierdlem40 43695 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
986 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
98743a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
988986, 987fssd 6627 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
989400, 592, 9883syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
990 eqid 2739 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
99115, 258, 14, 826, 26, 38, 39, 259, 261, 265, 80, 836, 837, 989, 841, 990fourierdlem75 43729 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
992 eqid 2739 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
99315, 258, 14, 826, 27, 37, 39, 259, 261, 267, 80, 836, 837, 593, 839, 992fourierdlem74 43728 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
994 fveq2 6783 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
995 oveq1 7291 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
996995fveq2d 6787 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
997994, 996oveq12d 7302 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
998997cbvmptv 5188 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
999445, 447, 889, 177, 259, 899, 918, 924, 926, 985, 991, 993, 998fourierdlem70 43724 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1000 eqid 2739 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1001 fveq2 6783 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10021001fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10031002breq1d 5085 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10041003cbvralvw 3384 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10051004ralbii 3093 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
100610053anbi3i 1158 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10071006anbi1i 624 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10081007anbi1i 624 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10091008anbi1i 624 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
101014, 15, 27, 38, 39, 40, 41, 818, 817, 999, 843, 1000, 1009fourierdlem87 43741 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1011 iftrue 4466 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10121011adantl 482 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
101353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
101454a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ*)
1015 rpre 12747 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10161015adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
1017 rpgt0 12751 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10181017adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < 𝑐)
101912rehalfcli 12231 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℝ
10201019a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
102112a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1022 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1023 halfpos 12212 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
102412, 1023ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 < π ↔ (π / 2) < π)
1025885, 1024mpbi 229 . . . . . . . . . . . . . . . . 17 (π / 2) < π
10261025a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10271016, 1020, 1021, 1022, 1026lelttrd 11142 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10281013, 1014, 1016, 1018, 1027eliood 43043 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ (0(,)π))
10291012, 1028eqeltrd 2840 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1030 iffalse 4469 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
1031 2pos 12085 . . . . . . . . . . . . . . . . . 18 0 < 2
103212, 100, 885, 1031divgt0ii 11901 . . . . . . . . . . . . . . . . 17 0 < (π / 2)
1033 elioo2 13129 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π)))
103453, 54, 1033mp2an 689 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ (0(,)π) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) < π))
10351019, 1032, 1025, 1034mpbir3an 1340 . . . . . . . . . . . . . . . 16 (π / 2) ∈ (0(,)π)
10361035a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → (π / 2) ∈ (0(,)π))
10371030, 1036eqeltrd 2840 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10381037adantl 482 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
10391029, 1038pm2.61dan 810 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
104010393ad2ant2 1133 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π))
1041 ioombl 24738 . . . . . . . . . . . . . . 15 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol
10421041a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol)
1043 simpr 485 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10441042, 1043jca 512 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1045 ioossicc 13174 . . . . . . . . . . . . . . . 16 (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
104647a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
104712a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
1048760a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ 0)
1049784, 1039sselid 3920 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
10501019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
1051 min2 12933 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10521015, 1019, 1051sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ (π / 2))
10531025a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (π / 2) < π)
10541049, 1050, 1047, 1052, 1053lelttrd 11142 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) < π)
10551049, 1047, 1054ltled 11132 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)
1056 iccss 13156 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ 0 ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ π)) → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10571046, 1047, 1048, 1055, 1056syl22anc 836 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (0[,]if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
10581045, 1057sstrid 3933 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π))
1059 0red 10987 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
10601018, 1012breqtrrd 5103 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10611032, 1030breqtrrid 5113 . . . . . . . . . . . . . . . . . . . . 21 𝑐 ≤ (π / 2) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10621061adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10631060, 1062pm2.61dan 810 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 < if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10641059, 1049, 1063ltled 11132 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1065 volioo 24742 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10661059, 1049, 1064, 1065syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0))
10671049recnd 11012 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
10681067subid1d 11330 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) − 0) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10691066, 1068eqtrd 2779 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1070 min1 12932 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10711015, 1019, 1070sylancl 586 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
10721069, 1071eqbrtrd 5097 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)
10731058, 1072jca 512 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10741073adantr 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
1075 sseq1 3947 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (𝑢 ⊆ (-π[,]π) ↔ (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π)))
1076 fveq2 6783 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (vol‘𝑢) = (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))))
10771076breq1d 5085 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐))
10781075, 1077anbi12d 631 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐)))
1079 itgeq1 24946 . . . . . . . . . . . . . . . . . 18 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10801079fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10811080breq1d 5085 . . . . . . . . . . . . . . . 16 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10821081ralbidv 3113 . . . . . . . . . . . . . . 15 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10831078, 1082imbi12d 345 . . . . . . . . . . . . . 14 (𝑢 = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
10841083rspcva 3560 . . . . . . . . . . . . 13 (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) ⊆ (-π[,]π) ∧ (vol‘(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10851044, 1074, 1084sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
108610853adant1 1129 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1087 oveq2 7292 . . . . . . . . . . . . . . . 16 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (0(,)𝑑) = (0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
10881087itgeq1d 43505 . . . . . . . . . . . . . . 15 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
10891088fveq2d 6787 . . . . . . . . . . . . . 14 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
10901089breq1d 5085 . . . . . . . . . . . . 13 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10911090ralbidv 3113 . . . . . . . . . . . 12 (𝑑 = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10921091rspcev 3562 . . . . . . . . . . 11 ((if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (0(,)π) ∧ ∀𝑘 ∈ ℕ (abs‘∫(0(,)if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10931040, 1086, 1092syl2anc 584 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
10941093rexlimdv3a 3216 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10951010, 1094mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (0(,)π)∀𝑘 ∈ ℕ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1096884, 1095r19.29a 3219 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
10971096ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1098 nnex 11988 . . . . . . . . 9 ℕ ∈ V
10991098mptex 7108 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V
11001099a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ∈ V)
1101 eqidd 2740 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠))
1102765adantl 482 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1103767ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1104765adantl 482 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
1105 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1106 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11071105, 1106eqeltrd 2840 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11081107nnred 11997 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1109718a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11101108, 1109readdcld 11013 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11111110adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1112210, 1104sselid 3920 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11131111, 1112remulcld 11014 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11141113resincld 15861 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11151104, 1114, 819syl2anc 584 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11161115adantlll 715 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11171108adantll 711 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11181117adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑛 ∈ ℝ)
1119 1red 10985 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 1 ∈ ℝ)
11201119rehalfcld 12229 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (1 / 2) ∈ ℝ)
11211118, 1120readdcld 11013 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑛 + (1 / 2)) ∈ ℝ)
1122210, 1102sselid 3920 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
11231121, 1122remulcld 11014 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11241123resincld 15861 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11251116, 1124eqeltrd 2840 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) ∈ ℝ)
11261103, 1125remulcld 11014 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1127817fvmpt2 6895 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11281102, 1126, 1127syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1129 oveq1 7291 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11301129oveq1d 7299 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11311130fveq2d 6787 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11321131ad2antlr 724 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11331116, 1132eqtrd 2779 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11341133oveq2d 7300 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11351128, 1134eqtrd 2779 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11361135itgeq2dv 24955 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1137 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1138798itgeq2dv 24955 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11391138eleq1d 2824 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1140793, 1139imbi12d 345 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1141767adantlr 712 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝑈𝑠) ∈ ℝ)
1142 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11431142, 765, 814syl2an 596 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11441141, 1143remulcld 11014 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11451144, 845itgcl 24957 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11461140, 1145chvarvv 2003 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11471101, 1136, 1137, 1146fvmptd 6891 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑘) = ∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11489, 2, 1100, 1147, 1146clim0c 15225 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(0(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
11491097, 1148mpbird 256 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) ⇝ 0)
11501098mptex 7108 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π)) ∈ V
11516, 1150eqeltri 2836 . . . . . 6 𝐸 ∈ V
11521151a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
11531098mptex 7108 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
11541153a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
115512recni 10998 . . . . . . 7 π ∈ ℂ
11561155a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1157 eqidd 2740 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1158 eqidd 2740 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1159 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
116012a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
11611157, 1158, 1159, 1160fvmptd 6891 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11621161adantl 482 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
11639, 2, 1154, 1156, 1162climconst 15261 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1164759, 885gtneii 11096 . . . . . 6 π ≠ 0
11651164a1i 11 . . . . 5 (𝜑 → π ≠ 0)
116615adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
116727adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
116838adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1169825, 1166, 1167, 1168, 39, 40, 41, 830, 818, 817fourierdlem67 43721 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
11701169adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝐺:(-π[,]π)⟶ℝ)
1171802sselda 3922 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ (-π[,]π))
11721170, 1171ffvelrnd 6971 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐺𝑠) ∈ ℝ)
11731169ffvelrnda 6970 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
11741169feqmptd 6846 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
11751174, 843eqeltrrd 2841 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1176802, 804, 1173, 1175iblss 24978 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ (𝐺𝑠)) ∈ 𝐿1)
11771172, 1176itgcl 24957 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ)
1178 eqid 2739 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)
11791178fvmpt2 6895 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(0(,)π)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11801142, 1177, 1179syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) = ∫(0(,)π)(𝐺𝑠) d𝑠)
11811180, 1177eqeltrd 2840 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1182 eqid 2739 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
11831182fvmpt2 6895 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
118412, 1183mpan2 688 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
11851155a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ∈ ℂ)
11861164a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → π ≠ 0)
1187 eldifsn 4721 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
11881185, 1186, 1187sylanbrc 583 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
11891184, 1188eqeltrd 2840 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11901189adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
11911155a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
11921164a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
11931177, 1191, 1192divcld 11760 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
11946fvmpt2 6895 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(0(,)π)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11951142, 1193, 1194syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(0(,)π)(𝐺𝑠) d𝑠 / π))
11961180eqcomd 2745 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛))
11971184eqcomd 2745 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11981197adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
11991196, 1198oveq12d 7302 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(0(,)π)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12001195, 1199eqtrd 2779 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(0(,)π)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12013, 4, 5, 8, 9, 2, 1149, 1152, 1163, 1165, 1181, 1190, 1200climdivf 43160 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12021155, 1164div0i 11718 . . . . 5 (0 / π) = 0
12031202a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12041201, 1203breqtrd 5101 . . 3 (𝜑𝐸 ⇝ 0)
1205 fourierdlem104.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12061098mptex 7108 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12071205, 1206eqeltri 2836 . . . 4 𝑍 ∈ V
12081207a1i 11 . . 3 (𝜑𝑍 ∈ V)
12091098mptex 7108 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V
12101209a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ∈ V)
1211 limccl 25048 . . . . . 6 ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ⊆ ℂ
12121211, 26sselid 3920 . . . . 5 (𝜑𝑌 ∈ ℂ)
12131212halfcld 12227 . . . 4 (𝜑 → (𝑌 / 2) ∈ ℂ)
1214 eqidd 2740 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) = (𝑚 ∈ ℕ ↦ (𝑌 / 2)))
1215 eqidd 2740 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑌 / 2) = (𝑌 / 2))
12169eqcomi 2748 . . . . . . . 8 (ℤ‘1) = ℕ
12171216eleq2i 2831 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12181217biimpi 215 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12191218adantl 482 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12201213adantr 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑌 / 2) ∈ ℂ)
12211214, 1215, 1219, 1220fvmptd 6891 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) = (𝑌 / 2))
12221, 2, 1210, 1213, 1221climconst 15261 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑌 / 2)) ⇝ (𝑌 / 2))
12231193, 6fmptd 6997 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12241223adantr 481 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12251224, 1219ffvelrnd 6971 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12261221, 1220eqeltrd 2840 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛) ∈ ℂ)
12271221oveq2d 7300 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑌 / 2)))
1228803a1i 11 . . . . . 6 (𝜑 → (0(,)π) ∈ dom vol)
1229 0red 10987 . . . . . . . . . . . . . 14 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ)
12301229rexrd 11034 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 0 ∈ ℝ*)
123154a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → π ∈ ℝ*)
1232 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (0(,)π) → 𝑠 ∈ (0(,)π))
1233 ioogtlb 43040 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12341230, 1231, 1232, 1233syl3anc 1370 . . . . . . . . . . . 12 (𝑠 ∈ (0(,)π) → 0 < 𝑠)
12351234gt0ne0d 11548 . . . . . . . . . . 11 (𝑠 ∈ (0(,)π) → 𝑠 ≠ 0)
12361235neneqd 2949 . . . . . . . . . 10 (𝑠 ∈ (0(,)π) → ¬ 𝑠 = 0)
1237 velsn 4578 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12381236, 1237sylnibr 329 . . . . . . . . 9 (𝑠 ∈ (0(,)π) → ¬ 𝑠 ∈ {0})
1239765, 1238eldifd 3899 . . . . . . . 8 (𝑠 ∈ (0(,)π) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12401239ssriv 3926 . . . . . . 7 (0(,)π) ⊆ ((-π[,]π) ∖ {0})
12411240a1i 11 . . . . . 6 (𝜑 → (0(,)π) ⊆ ((-π[,]π) ∖ {0}))
1242 fourierdlem104.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
12431234adantl 482 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)π)) → 0 < 𝑠)
12441243iftrued 4468 . . . . . 6 ((𝜑𝑠 ∈ (0(,)π)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑌)
1245 eqid 2739 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
1246 0red 10987 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
124712a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
1248759, 12, 885ltleii 11107 . . . . . . . . 9 0 ≤ π
12491248a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
1250 eqid 2739 . . . . . . . 8 (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
12511242, 1142, 1245, 1246, 1247, 1249, 1250dirkeritg 43650 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)))
1252 ubicc2 13206 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → π ∈ (0[,]π))
125353, 54, 1248, 1252mp3an 1460 . . . . . . . . . 10 π ∈ (0[,]π)
1254 oveq1 7291 . . . . . . . . . . . . 13 (𝑠 = π → (𝑠 / 2) = (π / 2))
1255 oveq2 7292 . . . . . . . . . . . . . . . . . 18 (𝑠 = π → (𝑘 · 𝑠) = (𝑘 · π))
12561255fveq2d 6787 . . . . . . . . . . . . . . . . 17 (𝑠 = π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · π)))
12571256oveq1d 7299 . . . . . . . . . . . . . . . 16 (𝑠 = π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · π)) / 𝑘))
1258 elfzelz 13265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
12591258zcnd 12436 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
12601155a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
12611164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → π ≠ 0)
12621259, 1260, 1261divcan4d 11766 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) = 𝑘)
12631262, 1258eqeltrd 2840 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · π) / π) ∈ ℤ)
12641259, 1260mulcld 11004 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · π) ∈ ℂ)
1265 sineq0 25689 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 · π) ∈ ℂ → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12661264, 1265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) = 0 ↔ ((𝑘 · π) / π) ∈ ℤ))
12671263, 1266mpbird 256 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · π)) = 0)
12681267oveq1d 7299 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = (0 / 𝑘))
1269 0red 10987 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1270 1red 10985 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
12711258zred 12435 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
127298a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 0 < 1)
1273 elfzle1 13268 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
12741269, 1270, 1271, 1272, 1273ltletrd 11144 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
12751274gt0ne0d 11548 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
12761259, 1275div0d 11759 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
12771268, 1276eqtrd 2779 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · π)) / 𝑘) = 0)
12781257, 1277sylan9eq 2799 . . . . . . . . . . . . . . 15 ((𝑠 = π ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12791278sumeq2dv 15424 . . . . . . . . . . . . . 14 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1280 fzfi 13701 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
12811280olci 863 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1282 sumz 15443 . . . . . . . . . . . . . . 15 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
12831281, 1282ax-mp 5 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (1...𝑛)0 = 0
12841279, 1283eqtrdi 2795 . . . . . . . . . . . . 13 (𝑠 = π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
12851254, 1284oveq12d 7302 . . . . . . . . . . . 12 (𝑠 = π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((π / 2) + 0))
12861285oveq1d 7299 . . . . . . . . . . 11 (𝑠 = π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((π / 2) + 0) / π))
1287 ovex 7317 . . . . . . . . . . 11 (((π / 2) + 0) / π) ∈ V
12881286, 1250, 1287fvmpt 6884 . . . . . . . . . 10 (π ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π))
12891253, 1288ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) = (((π / 2) + 0) / π)
1290 lbicc2 13205 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 0 ≤ π) → 0 ∈ (0[,]π))
129153, 54, 1248, 1290mp3an 1460 . . . . . . . . . 10 0 ∈ (0[,]π)
1292 oveq1 7291 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1293 2cn 12057 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
12941293, 238div0i 11718 . . . . . . . . . . . . . . . 16 (0 / 2) = 0
12951292, 1294eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1296 oveq2 7292 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
12971259mul01d 11183 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
12981296, 1297sylan9eq 2799 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
12991298fveq2d 6787 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1300 sin0 15867 . . . . . . . . . . . . . . . . . . . 20 (sin‘0) = 0
13011299, 1300eqtrdi 2795 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13021301oveq1d 7299 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
13031276adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13041302, 1303eqtrd 2779 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13051304sumeq2dv 15424 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
13061305, 1283eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13071295, 1306oveq12d 7302 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1308 00id 11159 . . . . . . . . . . . . . 14 (0 + 0) = 0
13091307, 1308eqtrdi 2795 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13101309oveq1d 7299 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13111310, 1202eqtrdi 2795 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1312 c0ex 10978 . . . . . . . . . . 11 0 ∈ V
13131311, 1250, 1312fvmpt 6884 . . . . . . . . . 10 (0 ∈ (0[,]π) → ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13141291, 1313ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
13151289, 1314oveq12i 7296 . . . . . . . 8 (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0)
13161315a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘π) − ((𝑠 ∈ (0[,]π) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0)) = ((((π / 2) + 0) / π) − 0))
13171019recni 10998 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
13181317addid1i 11171 . . . . . . . . . . . 12 ((π / 2) + 0) = (π / 2)
13191318oveq1i 7294 . . . . . . . . . . 11 (((π / 2) + 0) / π) = ((π / 2) / π)
13201155, 1293, 1155, 238, 1164divdiv32i 11739 . . . . . . . . . . 11 ((π / 2) / π) = ((π / π) / 2)
13211155, 1164dividi 11717 . . . . . . . . . . . 12 (π / π) = 1
13221321oveq1i 7294 . . . . . . . . . . 11 ((π / π) / 2) = (1 / 2)
13231319, 1320, 13223eqtri 2771 . . . . . . . . . 10 (((π / 2) + 0) / π) = (1 / 2)
13241323oveq1i 7294 . . . . . . . . 9 ((((π / 2) + 0) / π) − 0) = ((1 / 2) − 0)
1325 halfcn 12197 . . . . . . . . . 10 (1 / 2) ∈ ℂ
13261325subid1i 11302 . . . . . . . . 9 ((1 / 2) − 0) = (1 / 2)
13271324, 1326eqtri 2767 . . . . . . . 8 ((((π / 2) + 0) / π) − 0) = (1 / 2)
13281327a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((((π / 2) + 0) / π) − 0) = (1 / 2))
13291251, 1316, 13283eqtrd 2783 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
133014, 15, 258, 259, 261, 826, 263, 265, 267, 39, 40, 41, 818, 817, 837, 593, 839, 841, 26, 37, 1228, 1241, 6, 1242, 27, 1244, 1329fourierdlem95 43749 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13311219, 1330syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑌 / 2)) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13321205a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1333 fveq2 6783 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
13341333fveq1d 6785 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
13351334oveq2d 7300 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13361335adantr 481 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13371336itgeq2dv 24955 . . . . . . . 8 (𝑚 = 𝑛 → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13381337adantl 482 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
133914adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → 𝐹:ℝ⟶ℝ)
134015adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑋 ∈ ℝ)
1341775adantl 482 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13421340, 1341readdcld 11013 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)π)) → (𝑋 + 𝑠) ∈ ℝ)
13431339, 1342ffvelrnd 6971 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13441343adantlr 712 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13451242dirkerf 43645 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
13461345ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → (𝐷𝑛):ℝ⟶ℝ)
1347775adantl 482 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → 𝑠 ∈ ℝ)
13481346, 1347ffvelrnd 6971 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13491344, 1348remulcld 11014 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (0(,)π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
135014adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
135115adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1352210sseli 3918 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
13531352adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13541351, 1353readdcld 11013 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
13551350, 1354ffvelrnd 6971 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13561355adantlr 712 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
13571345ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
13581352adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
13591357, 1358ffvelrnd 6971 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
13601356, 1359remulcld 11014 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
136147a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
13621242dirkercncf 43655 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
13631362adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1364 eqid 2739 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
13651361, 1247, 825, 1166, 258, 831, 832, 833, 834, 835, 80, 836, 1363, 1364fourierdlem84 43738 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1366802, 804, 1360, 1365iblss 24978 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (0(,)π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
13671349, 1366itgrecl 24971 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
13681332, 1338, 1142, 1367fvmptd 6891 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
13691368eqcomd 2745 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13701219, 1369syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
13711227, 1331, 13703eqtrrd 2784 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑌 / 2))‘𝑛)))
13721, 2, 1204, 1208, 1222, 1225, 1226, 1371climadd 15350 . 2 (𝜑𝑍 ⇝ (0 + (𝑌 / 2)))
13731213addid2d 11185 . 2 (𝜑 → (0 + (𝑌 / 2)) = (𝑌 / 2))
13741372, 1373breqtrd 5101 1 (𝜑𝑍 ⇝ (𝑌 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wtru 1540  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  Vcvv 3433  csb 3833  cdif 3885  cun 3886  cin 3887  wss 3888  c0 4257  ifcif 4460  {csn 4562  {cpr 4564   class class class wbr 5075  cmpt 5158  dom cdm 5590  ran crn 5591  cres 5592  cio 6393   Fn wfn 6432  wf 6433  cfv 6437   Isom wiso 6438  crio 7240  (class class class)co 7284  m cmap 8624  Fincfn 8742  supcsup 9208  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  +∞cpnf 11015  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  2c2 12037  3c3 12038  0cn0 12242  cz 12328  cuz 12591  +crp 12739  (,)cioo 13088  [,]cicc 13091  ...cfz 13248  ..^cfzo 13391   mod cmo 13598  chash 14053  abscabs 14954  cli 15202  Σcsu 15406  sincsin 15782  πcpi 15785  TopOpenctopn 17141  topGenctg 17157  fldccnfld 20606  intcnt 22177  cnccncf 24048  volcvol 24636  𝐿1cibl 24790  citg 24791   lim climc 25035   D cdv 25036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cc 10200  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-symdif 4177  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5041  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-oadd 8310  df-omul 8311  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-dju 9668  df-card 9706  df-acn 9709  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-xnn0 12315  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-mod 13599  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-t1 22474  df-haus 22475  df-cmp 22547  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-ovol 24637  df-vol 24638  df-mbf 24792  df-itg1 24793  df-itg2 24794  df-ibl 24795  df-itg 24796  df-0p 24843  df-limc 25039  df-dv 25040
This theorem is referenced by:  fourierdlem112  43766
  Copyright terms: Public domain W3C validator