MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres2 Structured version   Visualization version   GIF version

Theorem fresaunres2 6646
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaunres2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fresaunres2
StepHypRef Expression
1 ffn 6600 . . . 4 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
2 ffn 6600 . . . 4 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
3 id 22 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 resasplit 6644 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
51, 2, 3, 4syl3an 1159 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
65reseq1d 5890 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵))
7 resundir 5906 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵))
8 inss2 4163 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
9 resabs2 5923 . . . . . 6 ((𝐴𝐵) ⊆ 𝐵 → ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵)))
108, 9ax-mp 5 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
11 resundir 5906 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))
1210, 11uneq12i 4095 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)))
13 dmres 5913 . . . . . . . . 9 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵)))
14 dmres 5913 . . . . . . . . . . 11 dom (𝐹 ↾ (𝐴𝐵)) = ((𝐴𝐵) ∩ dom 𝐹)
1514ineq2i 4143 . . . . . . . . . 10 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
16 disjdif 4405 . . . . . . . . . . . 12 (𝐵 ∩ (𝐴𝐵)) = ∅
1716ineq1i 4142 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (∅ ∩ dom 𝐹)
18 inass 4153 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
19 0in 4327 . . . . . . . . . . 11 (∅ ∩ dom 𝐹) = ∅
2017, 18, 193eqtr3i 2774 . . . . . . . . . 10 (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹)) = ∅
2115, 20eqtri 2766 . . . . . . . . 9 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = ∅
2213, 21eqtri 2766 . . . . . . . 8 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
23 relres 5920 . . . . . . . . 9 Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵)
24 reldm0 5837 . . . . . . . . 9 (Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅))
2523, 24ax-mp 5 . . . . . . . 8 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅)
2622, 25mpbir 230 . . . . . . 7 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
27 difss 4066 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐵
28 resabs2 5923 . . . . . . . 8 ((𝐵𝐴) ⊆ 𝐵 → ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴)))
2927, 28ax-mp 5 . . . . . . 7 ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴))
3026, 29uneq12i 4095 . . . . . 6 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)) = (∅ ∪ (𝐺 ↾ (𝐵𝐴)))
3130uneq2i 4094 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴))))
32 simp3 1137 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
3332uneq1d 4096 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))))
34 uncom 4087 . . . . . . . . . 10 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐵𝐴)) ∪ ∅)
35 un0 4324 . . . . . . . . . 10 ((𝐺 ↾ (𝐵𝐴)) ∪ ∅) = (𝐺 ↾ (𝐵𝐴))
3634, 35eqtri 2766 . . . . . . . . 9 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = (𝐺 ↾ (𝐵𝐴))
3736uneq2i 4094 . . . . . . . 8 ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
38 resundi 5905 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
39 incom 4135 . . . . . . . . . . . . 13 (𝐴𝐵) = (𝐵𝐴)
4039uneq1i 4093 . . . . . . . . . . . 12 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
41 inundif 4412 . . . . . . . . . . . 12 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4240, 41eqtri 2766 . . . . . . . . . . 11 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4342reseq2i 5888 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐺𝐵)
44 fnresdm 6551 . . . . . . . . . . . 12 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
452, 44syl 17 . . . . . . . . . . 11 (𝐺:𝐵𝐶 → (𝐺𝐵) = 𝐺)
4645adantl 482 . . . . . . . . . 10 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺𝐵) = 𝐺)
4743, 46eqtrid 2790 . . . . . . . . 9 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = 𝐺)
4838, 47eqtr3id 2792 . . . . . . . 8 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = 𝐺)
4937, 48eqtrid 2790 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
50493adant3 1131 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5133, 50eqtrd 2778 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5231, 51eqtrid 2790 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = 𝐺)
5312, 52eqtrid 2790 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = 𝐺)
547, 53eqtrid 2790 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = 𝐺)
556, 54eqtrd 2778 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  dom cdm 5589  cres 5591  Rel wrel 5594   Fn wfn 6428  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599  df-res 5601  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  fresaunres1  6647  mapunen  8933  ptuncnv  22958  cvmliftlem10  33256  elmapresaunres2  40593
  Copyright terms: Public domain W3C validator