MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres2 Structured version   Visualization version   GIF version

Theorem fresaunres2 6695
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaunres2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fresaunres2
StepHypRef Expression
1 ffn 6651 . . . 4 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
2 ffn 6651 . . . 4 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
3 id 22 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 resasplit 6693 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
51, 2, 3, 4syl3an 1160 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
65reseq1d 5926 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵))
7 resundir 5942 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵))
8 inss2 4185 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
9 resabs2 5957 . . . . . 6 ((𝐴𝐵) ⊆ 𝐵 → ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵)))
108, 9ax-mp 5 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
11 resundir 5942 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))
1210, 11uneq12i 4113 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)))
13 dmres 5960 . . . . . . . . 9 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵)))
14 dmres 5960 . . . . . . . . . . 11 dom (𝐹 ↾ (𝐴𝐵)) = ((𝐴𝐵) ∩ dom 𝐹)
1514ineq2i 4164 . . . . . . . . . 10 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
16 disjdif 4419 . . . . . . . . . . . 12 (𝐵 ∩ (𝐴𝐵)) = ∅
1716ineq1i 4163 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (∅ ∩ dom 𝐹)
18 inass 4175 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
19 0in 4344 . . . . . . . . . . 11 (∅ ∩ dom 𝐹) = ∅
2017, 18, 193eqtr3i 2762 . . . . . . . . . 10 (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹)) = ∅
2115, 20eqtri 2754 . . . . . . . . 9 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = ∅
2213, 21eqtri 2754 . . . . . . . 8 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
23 relres 5953 . . . . . . . . 9 Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵)
24 reldm0 5867 . . . . . . . . 9 (Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅))
2523, 24ax-mp 5 . . . . . . . 8 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅)
2622, 25mpbir 231 . . . . . . 7 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
27 difss 4083 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐵
28 resabs2 5957 . . . . . . . 8 ((𝐵𝐴) ⊆ 𝐵 → ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴)))
2927, 28ax-mp 5 . . . . . . 7 ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴))
3026, 29uneq12i 4113 . . . . . 6 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)) = (∅ ∪ (𝐺 ↾ (𝐵𝐴)))
3130uneq2i 4112 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴))))
32 simp3 1138 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
3332uneq1d 4114 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))))
34 uncom 4105 . . . . . . . . . 10 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐵𝐴)) ∪ ∅)
35 un0 4341 . . . . . . . . . 10 ((𝐺 ↾ (𝐵𝐴)) ∪ ∅) = (𝐺 ↾ (𝐵𝐴))
3634, 35eqtri 2754 . . . . . . . . 9 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = (𝐺 ↾ (𝐵𝐴))
3736uneq2i 4112 . . . . . . . 8 ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
38 resundi 5941 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
39 incom 4156 . . . . . . . . . . . . 13 (𝐴𝐵) = (𝐵𝐴)
4039uneq1i 4111 . . . . . . . . . . . 12 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
41 inundif 4426 . . . . . . . . . . . 12 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4240, 41eqtri 2754 . . . . . . . . . . 11 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4342reseq2i 5924 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐺𝐵)
44 fnresdm 6600 . . . . . . . . . . . 12 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
452, 44syl 17 . . . . . . . . . . 11 (𝐺:𝐵𝐶 → (𝐺𝐵) = 𝐺)
4645adantl 481 . . . . . . . . . 10 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺𝐵) = 𝐺)
4743, 46eqtrid 2778 . . . . . . . . 9 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = 𝐺)
4838, 47eqtr3id 2780 . . . . . . . 8 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = 𝐺)
4937, 48eqtrid 2778 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
50493adant3 1132 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5133, 50eqtrd 2766 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5231, 51eqtrid 2778 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = 𝐺)
5312, 52eqtrid 2778 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = 𝐺)
547, 53eqtrid 2778 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = 𝐺)
556, 54eqtrd 2766 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4280  dom cdm 5614  cres 5616  Rel wrel 5619   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-res 5626  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fresaunres1  6696  mapunen  9059  ptuncnv  23722  cvmliftlem10  35338  elmapresaunres2  42874
  Copyright terms: Public domain W3C validator