Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres2 Structured version   Visualization version   GIF version

Theorem fresaunres2 6527
 Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaunres2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fresaunres2
StepHypRef Expression
1 ffn 6490 . . . 4 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
2 ffn 6490 . . . 4 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
3 id 22 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 resasplit 6525 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
51, 2, 3, 4syl3an 1157 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
65reseq1d 5818 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵))
7 resundir 5834 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵))
8 inss2 4156 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
9 resabs2 5851 . . . . . 6 ((𝐴𝐵) ⊆ 𝐵 → ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵)))
108, 9ax-mp 5 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
11 resundir 5834 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))
1210, 11uneq12i 4088 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)))
13 dmres 5841 . . . . . . . . 9 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵)))
14 dmres 5841 . . . . . . . . . . 11 dom (𝐹 ↾ (𝐴𝐵)) = ((𝐴𝐵) ∩ dom 𝐹)
1514ineq2i 4136 . . . . . . . . . 10 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
16 disjdif 4379 . . . . . . . . . . . 12 (𝐵 ∩ (𝐴𝐵)) = ∅
1716ineq1i 4135 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (∅ ∩ dom 𝐹)
18 inass 4146 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
19 0in 4301 . . . . . . . . . . 11 (∅ ∩ dom 𝐹) = ∅
2017, 18, 193eqtr3i 2829 . . . . . . . . . 10 (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹)) = ∅
2115, 20eqtri 2821 . . . . . . . . 9 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = ∅
2213, 21eqtri 2821 . . . . . . . 8 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
23 relres 5848 . . . . . . . . 9 Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵)
24 reldm0 5763 . . . . . . . . 9 (Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅))
2523, 24ax-mp 5 . . . . . . . 8 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅)
2622, 25mpbir 234 . . . . . . 7 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
27 difss 4059 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐵
28 resabs2 5851 . . . . . . . 8 ((𝐵𝐴) ⊆ 𝐵 → ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴)))
2927, 28ax-mp 5 . . . . . . 7 ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴))
3026, 29uneq12i 4088 . . . . . 6 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)) = (∅ ∪ (𝐺 ↾ (𝐵𝐴)))
3130uneq2i 4087 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴))))
32 simp3 1135 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
3332uneq1d 4089 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))))
34 uncom 4080 . . . . . . . . . 10 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐵𝐴)) ∪ ∅)
35 un0 4298 . . . . . . . . . 10 ((𝐺 ↾ (𝐵𝐴)) ∪ ∅) = (𝐺 ↾ (𝐵𝐴))
3634, 35eqtri 2821 . . . . . . . . 9 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = (𝐺 ↾ (𝐵𝐴))
3736uneq2i 4087 . . . . . . . 8 ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
38 resundi 5833 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
39 incom 4128 . . . . . . . . . . . . 13 (𝐴𝐵) = (𝐵𝐴)
4039uneq1i 4086 . . . . . . . . . . . 12 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
41 inundif 4385 . . . . . . . . . . . 12 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4240, 41eqtri 2821 . . . . . . . . . . 11 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4342reseq2i 5816 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐺𝐵)
44 fnresdm 6441 . . . . . . . . . . . 12 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
452, 44syl 17 . . . . . . . . . . 11 (𝐺:𝐵𝐶 → (𝐺𝐵) = 𝐺)
4645adantl 485 . . . . . . . . . 10 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺𝐵) = 𝐺)
4743, 46syl5eq 2845 . . . . . . . . 9 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = 𝐺)
4838, 47syl5eqr 2847 . . . . . . . 8 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = 𝐺)
4937, 48syl5eq 2845 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
50493adant3 1129 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5133, 50eqtrd 2833 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5231, 51syl5eq 2845 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = 𝐺)
5312, 52syl5eq 2845 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = 𝐺)
547, 53syl5eq 2845 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = 𝐺)
556, 54eqtrd 2833 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  dom cdm 5520   ↾ cres 5522  Rel wrel 5525   Fn wfn 6322  ⟶wf 6323 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5032  df-opab 5094  df-xp 5526  df-rel 5527  df-dm 5530  df-res 5532  df-fun 6329  df-fn 6330  df-f 6331 This theorem is referenced by:  fresaunres1  6528  mapunen  8677  ptuncnv  22426  cvmliftlem10  32690  elmapresaunres2  39776
 Copyright terms: Public domain W3C validator