MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres2 Structured version   Visualization version   GIF version

Theorem fresaunres2 6421
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaunres2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fresaunres2
StepHypRef Expression
1 ffn 6385 . . . 4 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
2 ffn 6385 . . . 4 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
3 id 22 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
4 resasplit 6419 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
51, 2, 3, 4syl3an 1153 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
65reseq1d 5736 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵))
7 resundir 5752 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵))
8 inss2 4128 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
9 resabs2 5769 . . . . . 6 ((𝐴𝐵) ⊆ 𝐵 → ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵)))
108, 9ax-mp 5 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐹 ↾ (𝐴𝐵))
11 resundir 5752 . . . . 5 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵) = (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))
1210, 11uneq12i 4060 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)))
13 dmres 5759 . . . . . . . . 9 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵)))
14 dmres 5759 . . . . . . . . . . 11 dom (𝐹 ↾ (𝐴𝐵)) = ((𝐴𝐵) ∩ dom 𝐹)
1514ineq2i 4108 . . . . . . . . . 10 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
16 disjdif 4337 . . . . . . . . . . . 12 (𝐵 ∩ (𝐴𝐵)) = ∅
1716ineq1i 4107 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (∅ ∩ dom 𝐹)
18 inass 4118 . . . . . . . . . . 11 ((𝐵 ∩ (𝐴𝐵)) ∩ dom 𝐹) = (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹))
19 0in 4269 . . . . . . . . . . 11 (∅ ∩ dom 𝐹) = ∅
2017, 18, 193eqtr3i 2826 . . . . . . . . . 10 (𝐵 ∩ ((𝐴𝐵) ∩ dom 𝐹)) = ∅
2115, 20eqtri 2818 . . . . . . . . 9 (𝐵 ∩ dom (𝐹 ↾ (𝐴𝐵))) = ∅
2213, 21eqtri 2818 . . . . . . . 8 dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
23 relres 5766 . . . . . . . . 9 Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵)
24 reldm0 5683 . . . . . . . . 9 (Rel ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅))
2523, 24ax-mp 5 . . . . . . . 8 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅ ↔ dom ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅)
2622, 25mpbir 232 . . . . . . 7 ((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) = ∅
27 difss 4031 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐵
28 resabs2 5769 . . . . . . . 8 ((𝐵𝐴) ⊆ 𝐵 → ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴)))
2927, 28ax-mp 5 . . . . . . 7 ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵) = (𝐺 ↾ (𝐵𝐴))
3026, 29uneq12i 4060 . . . . . 6 (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵)) = (∅ ∪ (𝐺 ↾ (𝐵𝐴)))
3130uneq2i 4059 . . . . 5 ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴))))
32 simp3 1131 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
3332uneq1d 4061 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))))
34 uncom 4052 . . . . . . . . . 10 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐵𝐴)) ∪ ∅)
35 un0 4266 . . . . . . . . . 10 ((𝐺 ↾ (𝐵𝐴)) ∪ ∅) = (𝐺 ↾ (𝐵𝐴))
3634, 35eqtri 2818 . . . . . . . . 9 (∅ ∪ (𝐺 ↾ (𝐵𝐴))) = (𝐺 ↾ (𝐵𝐴))
3736uneq2i 4059 . . . . . . . 8 ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
38 resundi 5751 . . . . . . . . 9 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
39 incom 4101 . . . . . . . . . . . . 13 (𝐴𝐵) = (𝐵𝐴)
4039uneq1i 4058 . . . . . . . . . . . 12 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
41 inundif 4343 . . . . . . . . . . . 12 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
4240, 41eqtri 2818 . . . . . . . . . . 11 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
4342reseq2i 5734 . . . . . . . . . 10 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐺𝐵)
44 fnresdm 6339 . . . . . . . . . . . 12 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
452, 44syl 17 . . . . . . . . . . 11 (𝐺:𝐵𝐶 → (𝐺𝐵) = 𝐺)
4645adantl 482 . . . . . . . . . 10 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺𝐵) = 𝐺)
4743, 46syl5eq 2842 . . . . . . . . 9 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = 𝐺)
4838, 47syl5eqr 2844 . . . . . . . 8 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = 𝐺)
4937, 48syl5eq 2842 . . . . . . 7 ((𝐹:𝐴𝐶𝐺:𝐵𝐶) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
50493adant3 1125 . . . . . 6 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐺 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5133, 50eqtrd 2830 . . . . 5 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (∅ ∪ (𝐺 ↾ (𝐵𝐴)))) = 𝐺)
5231, 51syl5eq 2842 . . . 4 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ ((𝐺 ↾ (𝐵𝐴)) ↾ 𝐵))) = 𝐺)
5312, 52syl5eq 2842 . . 3 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ↾ 𝐵) ∪ (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) ↾ 𝐵)) = 𝐺)
547, 53syl5eq 2842 . 2 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) ↾ 𝐵) = 𝐺)
556, 54eqtrd 2830 1 ((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  cdif 3858  cun 3859  cin 3860  wss 3861  c0 4213  dom cdm 5446  cres 5448  Rel wrel 5451   Fn wfn 6223  wf 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pr 5224
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ral 3109  df-rex 3110  df-rab 3113  df-v 3438  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-sn 4475  df-pr 4477  df-op 4481  df-br 4965  df-opab 5027  df-xp 5452  df-rel 5453  df-dm 5456  df-res 5458  df-fun 6230  df-fn 6231  df-f 6232
This theorem is referenced by:  fresaunres1  6422  mapunen  8536  ptuncnv  22099  cvmliftlem10  32143  elmapresaunres2  38866
  Copyright terms: Public domain W3C validator