| Step | Hyp | Ref
| Expression |
| 1 | | qtophmeo.2 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | qtophmeo.3 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| 3 | | qtophmeo.4 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑋–onto→𝑌) |
| 4 | | fofn 6822 |
. . . . . . 7
⊢ (𝐺:𝑋–onto→𝑌 → 𝐺 Fn 𝑋) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn 𝑋) |
| 6 | | qtopid 23713 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 Fn 𝑋) → 𝐺 ∈ (𝐽 Cn (𝐽 qTop 𝐺))) |
| 7 | 1, 5, 6 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn (𝐽 qTop 𝐺))) |
| 8 | | df-3an 1089 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑥) = (𝐹‘𝑦)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 9 | | qtophmeo.5 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐺‘𝑥) = (𝐺‘𝑦))) |
| 10 | 9 | biimpd 229 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐺‘𝑥) = (𝐺‘𝑦))) |
| 11 | 10 | impr 454 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 12 | 8, 11 | sylan2b 594 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 13 | 1, 2, 7, 12 | qtopeu 23724 |
. . . 4
⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) |
| 14 | | reurex 3384 |
. . . 4
⊢
(∃!𝑓 ∈
((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹) → ∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) |
| 15 | 13, 14 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) |
| 16 | | simprl 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) → 𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))) |
| 17 | | fofn 6822 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) |
| 18 | 2, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 19 | | qtopid 23713 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| 20 | 1, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| 21 | | df-3an 1089 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐺‘𝑥) = (𝐺‘𝑦)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐺‘𝑥) = (𝐺‘𝑦))) |
| 22 | 9 | biimprd 248 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐺‘𝑥) = (𝐺‘𝑦) → (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 23 | 22 | impr 454 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝐺‘𝑥) = (𝐺‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 24 | 21, 23 | sylan2b 594 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐺‘𝑥) = (𝐺‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 25 | 1, 3, 20, 24 | qtopeu 23724 |
. . . . . . 7
⊢ (𝜑 → ∃!𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))𝐹 = (𝑔 ∘ 𝐺)) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) → ∃!𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))𝐹 = (𝑔 ∘ 𝐺)) |
| 27 | | reurex 3384 |
. . . . . 6
⊢
(∃!𝑔 ∈
((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))𝐹 = (𝑔 ∘ 𝐺) → ∃𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))𝐹 = (𝑔 ∘ 𝐺)) |
| 28 | 26, 27 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) → ∃𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))𝐹 = (𝑔 ∘ 𝐺)) |
| 29 | | qtoptopon 23712 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 30 | 1, 2, 29 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 32 | | qtoptopon 23712 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺:𝑋–onto→𝑌) → (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌)) |
| 33 | 1, 3, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌)) |
| 34 | 33 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌)) |
| 35 | | simplrl 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))) |
| 36 | | cnf2 23257 |
. . . . . . . 8
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌) ∧ 𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))) → 𝑓:𝑌⟶𝑌) |
| 37 | 31, 34, 35, 36 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝑓:𝑌⟶𝑌) |
| 38 | | simprl 771 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))) |
| 39 | | cnf2 23257 |
. . . . . . . 8
⊢ (((𝐽 qTop 𝐺) ∈ (TopOn‘𝑌) ∧ (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))) → 𝑔:𝑌⟶𝑌) |
| 40 | 34, 31, 38, 39 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝑔:𝑌⟶𝑌) |
| 41 | | coeq1 5868 |
. . . . . . . . 9
⊢ (ℎ = (𝑔 ∘ 𝑓) → (ℎ ∘ 𝐹) = ((𝑔 ∘ 𝑓) ∘ 𝐹)) |
| 42 | 41 | eqeq2d 2748 |
. . . . . . . 8
⊢ (ℎ = (𝑔 ∘ 𝑓) → (𝐹 = (ℎ ∘ 𝐹) ↔ 𝐹 = ((𝑔 ∘ 𝑓) ∘ 𝐹))) |
| 43 | | coeq1 5868 |
. . . . . . . . 9
⊢ (ℎ = ( I ↾ 𝑌) → (ℎ ∘ 𝐹) = (( I ↾ 𝑌) ∘ 𝐹)) |
| 44 | 43 | eqeq2d 2748 |
. . . . . . . 8
⊢ (ℎ = ( I ↾ 𝑌) → (𝐹 = (ℎ ∘ 𝐹) ↔ 𝐹 = (( I ↾ 𝑌) ∘ 𝐹))) |
| 45 | | simpr3 1197 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 46 | 1, 2, 20, 45 | qtopeu 23724 |
. . . . . . . . 9
⊢ (𝜑 → ∃!ℎ ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))𝐹 = (ℎ ∘ 𝐹)) |
| 47 | 46 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → ∃!ℎ ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))𝐹 = (ℎ ∘ 𝐹)) |
| 48 | | cnco 23274 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))) → (𝑔 ∘ 𝑓) ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))) |
| 49 | 35, 38, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝑔 ∘ 𝑓) ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))) |
| 50 | | idcn 23265 |
. . . . . . . . . 10
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → ( I ↾ 𝑌) ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))) |
| 51 | 30, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ( I ↾ 𝑌) ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))) |
| 52 | 51 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → ( I ↾ 𝑌) ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐹))) |
| 53 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐹 = (𝑔 ∘ 𝐺)) |
| 54 | | simplrr 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐺 = (𝑓 ∘ 𝐹)) |
| 55 | 54 | coeq2d 5873 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝑔 ∘ 𝐺) = (𝑔 ∘ (𝑓 ∘ 𝐹))) |
| 56 | 53, 55 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐹 = (𝑔 ∘ (𝑓 ∘ 𝐹))) |
| 57 | | coass 6285 |
. . . . . . . . 9
⊢ ((𝑔 ∘ 𝑓) ∘ 𝐹) = (𝑔 ∘ (𝑓 ∘ 𝐹)) |
| 58 | 56, 57 | eqtr4di 2795 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐹 = ((𝑔 ∘ 𝑓) ∘ 𝐹)) |
| 59 | | fof 6820 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
| 60 | 2, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 61 | 60 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐹:𝑋⟶𝑌) |
| 62 | | fcoi2 6783 |
. . . . . . . . . 10
⊢ (𝐹:𝑋⟶𝑌 → (( I ↾ 𝑌) ∘ 𝐹) = 𝐹) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (( I ↾ 𝑌) ∘ 𝐹) = 𝐹) |
| 64 | 63 | eqcomd 2743 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐹 = (( I ↾ 𝑌) ∘ 𝐹)) |
| 65 | 42, 44, 47, 49, 52, 58, 64 | reu2eqd 3742 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝑔 ∘ 𝑓) = ( I ↾ 𝑌)) |
| 66 | | coeq1 5868 |
. . . . . . . . 9
⊢ (ℎ = (𝑓 ∘ 𝑔) → (ℎ ∘ 𝐺) = ((𝑓 ∘ 𝑔) ∘ 𝐺)) |
| 67 | 66 | eqeq2d 2748 |
. . . . . . . 8
⊢ (ℎ = (𝑓 ∘ 𝑔) → (𝐺 = (ℎ ∘ 𝐺) ↔ 𝐺 = ((𝑓 ∘ 𝑔) ∘ 𝐺))) |
| 68 | | coeq1 5868 |
. . . . . . . . 9
⊢ (ℎ = ( I ↾ 𝑌) → (ℎ ∘ 𝐺) = (( I ↾ 𝑌) ∘ 𝐺)) |
| 69 | 68 | eqeq2d 2748 |
. . . . . . . 8
⊢ (ℎ = ( I ↾ 𝑌) → (𝐺 = (ℎ ∘ 𝐺) ↔ 𝐺 = (( I ↾ 𝑌) ∘ 𝐺))) |
| 70 | | simpr3 1197 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝐺‘𝑥) = (𝐺‘𝑦))) → (𝐺‘𝑥) = (𝐺‘𝑦)) |
| 71 | 1, 3, 7, 70 | qtopeu 23724 |
. . . . . . . . 9
⊢ (𝜑 → ∃!ℎ ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))𝐺 = (ℎ ∘ 𝐺)) |
| 72 | 71 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → ∃!ℎ ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))𝐺 = (ℎ ∘ 𝐺)) |
| 73 | | cnco 23274 |
. . . . . . . . 9
⊢ ((𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺))) → (𝑓 ∘ 𝑔) ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))) |
| 74 | 38, 35, 73 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝑓 ∘ 𝑔) ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))) |
| 75 | | idcn 23265 |
. . . . . . . . . 10
⊢ ((𝐽 qTop 𝐺) ∈ (TopOn‘𝑌) → ( I ↾ 𝑌) ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))) |
| 76 | 33, 75 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ( I ↾ 𝑌) ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))) |
| 77 | 76 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → ( I ↾ 𝑌) ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐺))) |
| 78 | 53 | coeq2d 5873 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝑓 ∘ 𝐹) = (𝑓 ∘ (𝑔 ∘ 𝐺))) |
| 79 | 54, 78 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐺 = (𝑓 ∘ (𝑔 ∘ 𝐺))) |
| 80 | | coass 6285 |
. . . . . . . . 9
⊢ ((𝑓 ∘ 𝑔) ∘ 𝐺) = (𝑓 ∘ (𝑔 ∘ 𝐺)) |
| 81 | 79, 80 | eqtr4di 2795 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐺 = ((𝑓 ∘ 𝑔) ∘ 𝐺)) |
| 82 | | fof 6820 |
. . . . . . . . . . . 12
⊢ (𝐺:𝑋–onto→𝑌 → 𝐺:𝑋⟶𝑌) |
| 83 | 3, 82 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:𝑋⟶𝑌) |
| 84 | 83 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐺:𝑋⟶𝑌) |
| 85 | | fcoi2 6783 |
. . . . . . . . . 10
⊢ (𝐺:𝑋⟶𝑌 → (( I ↾ 𝑌) ∘ 𝐺) = 𝐺) |
| 86 | 84, 85 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (( I ↾ 𝑌) ∘ 𝐺) = 𝐺) |
| 87 | 86 | eqcomd 2743 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → 𝐺 = (( I ↾ 𝑌) ∘ 𝐺)) |
| 88 | 67, 69, 72, 74, 77, 81, 87 | reu2eqd 3742 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → (𝑓 ∘ 𝑔) = ( I ↾ 𝑌)) |
| 89 | 37, 40, 65, 88 | 2fcoidinvd 7315 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → ◡𝑓 = 𝑔) |
| 90 | 89, 38 | eqeltrd 2841 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) ∧ (𝑔 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)) ∧ 𝐹 = (𝑔 ∘ 𝐺))) → ◡𝑓 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))) |
| 91 | 28, 90 | rexlimddv 3161 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) → ◡𝑓 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹))) |
| 92 | | ishmeo 23767 |
. . . 4
⊢ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ↔ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ ◡𝑓 ∈ ((𝐽 qTop 𝐺) Cn (𝐽 qTop 𝐹)))) |
| 93 | 16, 91, 92 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) → 𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))) |
| 94 | | simprr 773 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹) Cn (𝐽 qTop 𝐺)) ∧ 𝐺 = (𝑓 ∘ 𝐹))) → 𝐺 = (𝑓 ∘ 𝐹)) |
| 95 | 15, 93, 94 | reximssdv 3173 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) |
| 96 | | eqtr2 2761 |
. . . 4
⊢ ((𝐺 = (𝑓 ∘ 𝐹) ∧ 𝐺 = (𝑔 ∘ 𝐹)) → (𝑓 ∘ 𝐹) = (𝑔 ∘ 𝐹)) |
| 97 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝐹:𝑋–onto→𝑌) |
| 98 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 99 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌)) |
| 100 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))) |
| 101 | | hmeof1o2 23771 |
. . . . . . 7
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌) ∧ 𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))) → 𝑓:𝑌–1-1-onto→𝑌) |
| 102 | 98, 99, 100, 101 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝑓:𝑌–1-1-onto→𝑌) |
| 103 | | f1ofn 6849 |
. . . . . 6
⊢ (𝑓:𝑌–1-1-onto→𝑌 → 𝑓 Fn 𝑌) |
| 104 | 102, 103 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝑓 Fn 𝑌) |
| 105 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))) |
| 106 | | hmeof1o2 23771 |
. . . . . . 7
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ (𝐽 qTop 𝐺) ∈ (TopOn‘𝑌) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))) → 𝑔:𝑌–1-1-onto→𝑌) |
| 107 | 98, 99, 105, 106 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝑔:𝑌–1-1-onto→𝑌) |
| 108 | | f1ofn 6849 |
. . . . . 6
⊢ (𝑔:𝑌–1-1-onto→𝑌 → 𝑔 Fn 𝑌) |
| 109 | 107, 108 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → 𝑔 Fn 𝑌) |
| 110 | | cocan2 7312 |
. . . . 5
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑓 Fn 𝑌 ∧ 𝑔 Fn 𝑌) → ((𝑓 ∘ 𝐹) = (𝑔 ∘ 𝐹) ↔ 𝑓 = 𝑔)) |
| 111 | 97, 104, 109, 110 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → ((𝑓 ∘ 𝐹) = (𝑔 ∘ 𝐹) ↔ 𝑓 = 𝑔)) |
| 112 | 96, 111 | imbitrid 244 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)) ∧ 𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺)))) → ((𝐺 = (𝑓 ∘ 𝐹) ∧ 𝐺 = (𝑔 ∘ 𝐹)) → 𝑓 = 𝑔)) |
| 113 | 112 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))∀𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))((𝐺 = (𝑓 ∘ 𝐹) ∧ 𝐺 = (𝑔 ∘ 𝐹)) → 𝑓 = 𝑔)) |
| 114 | | coeq1 5868 |
. . . 4
⊢ (𝑓 = 𝑔 → (𝑓 ∘ 𝐹) = (𝑔 ∘ 𝐹)) |
| 115 | 114 | eqeq2d 2748 |
. . 3
⊢ (𝑓 = 𝑔 → (𝐺 = (𝑓 ∘ 𝐹) ↔ 𝐺 = (𝑔 ∘ 𝐹))) |
| 116 | 115 | reu4 3737 |
. 2
⊢
(∃!𝑓 ∈
((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹) ↔ (∃𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹) ∧ ∀𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))∀𝑔 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))((𝐺 = (𝑓 ∘ 𝐹) ∧ 𝐺 = (𝑔 ∘ 𝐹)) → 𝑓 = 𝑔))) |
| 117 | 95, 113, 116 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑓 ∈ ((𝐽 qTop 𝐹)Homeo(𝐽 qTop 𝐺))𝐺 = (𝑓 ∘ 𝐹)) |