Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmieq | Structured version Visualization version GIF version |
Description: Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
lmieq.c | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lmieq.d | ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) |
Ref | Expression |
---|---|
lmieq | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqeq2 6747 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑀‘𝑏) = (𝑀‘𝐵) ↔ (𝑀‘𝐴) = (𝑀‘𝐵))) | |
2 | fveqeq2 6747 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑀‘𝑏) = (𝑀‘𝐵) ↔ (𝑀‘𝐵) = (𝑀‘𝐵))) | |
3 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
5 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
8 | lmif.m | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
9 | lmif.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
10 | lmif.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
11 | lmieq.c | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | lmicl 26908 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
13 | 3, 4, 5, 6, 7, 8, 9, 10, 12 | lmireu 26912 | . 2 ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = (𝑀‘𝐵)) |
14 | lmicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
15 | lmieq.d | . 2 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) | |
16 | eqidd 2740 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐵)) | |
17 | 1, 2, 13, 14, 11, 15, 16 | reu2eqd 3666 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 class class class wbr 5069 ran crn 5569 ‘cfv 6400 2c2 11914 Basecbs 16792 distcds 16843 TarskiGcstrkg 26552 DimTarskiG≥cstrkgld 26556 Itvcitv 26558 LineGclng 26559 lInvGclmi 26895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-oadd 8229 df-er 8414 df-map 8533 df-pm 8534 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-dju 9546 df-card 9584 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-n0 12120 df-xnn0 12192 df-z 12206 df-uz 12468 df-fz 13125 df-fzo 13268 df-hash 13929 df-word 14102 df-concat 14158 df-s1 14185 df-s2 14445 df-s3 14446 df-trkgc 26570 df-trkgb 26571 df-trkgcb 26572 df-trkgld 26574 df-trkg 26575 df-cgrg 26633 df-leg 26705 df-mir 26775 df-rag 26816 df-perpg 26818 df-mid 26896 df-lmi 26897 |
This theorem is referenced by: trgcopyeulem 26927 |
Copyright terms: Public domain | W3C validator |