| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmieq | Structured version Visualization version GIF version | ||
| Description: Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
| lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
| lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| lmieq.c | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| lmieq.d | ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) |
| Ref | Expression |
|---|---|
| lmieq | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 6849 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑀‘𝑏) = (𝑀‘𝐵) ↔ (𝑀‘𝐴) = (𝑀‘𝐵))) | |
| 2 | fveqeq2 6849 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑀‘𝑏) = (𝑀‘𝐵) ↔ (𝑀‘𝐵) = (𝑀‘𝐵))) | |
| 3 | ismid.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | ismid.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 5 | ismid.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | ismid.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | ismid.1 | . . 3 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 8 | lmif.m | . . 3 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
| 9 | lmif.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 10 | lmif.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 11 | lmieq.c | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | lmicl 28766 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 13 | 3, 4, 5, 6, 7, 8, 9, 10, 12 | lmireu 28770 | . 2 ⊢ (𝜑 → ∃!𝑏 ∈ 𝑃 (𝑀‘𝑏) = (𝑀‘𝐵)) |
| 14 | lmicl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 15 | lmieq.d | . 2 ⊢ (𝜑 → (𝑀‘𝐴) = (𝑀‘𝐵)) | |
| 16 | eqidd 2730 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = (𝑀‘𝐵)) | |
| 17 | 1, 2, 13, 14, 11, 15, 16 | reu2eqd 3704 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ran crn 5632 ‘cfv 6499 2c2 12217 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 DimTarskiG≥cstrkgld 28411 Itvcitv 28413 LineGclng 28414 lInvGclmi 28753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-trkgc 28428 df-trkgb 28429 df-trkgcb 28430 df-trkgld 28432 df-trkg 28433 df-cgrg 28491 df-leg 28563 df-mir 28633 df-rag 28674 df-perpg 28676 df-mid 28754 df-lmi 28755 |
| This theorem is referenced by: trgcopyeulem 28785 |
| Copyright terms: Public domain | W3C validator |