| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > footeq | Structured version Visualization version GIF version | ||
| Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
| Ref | Expression |
|---|---|
| isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
| isperp.d | ⊢ − = (dist‘𝐺) |
| isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| footeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| footeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| footeq.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| footeq.1 | ⊢ (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴) |
| footeq.2 | ⊢ (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴) |
| Ref | Expression |
|---|---|
| footeq | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7422 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑍𝐿𝑥) = (𝑍𝐿𝑋)) | |
| 2 | 1 | breq1d 5135 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴)) |
| 3 | oveq2 7422 | . . 3 ⊢ (𝑥 = 𝑌 → (𝑍𝐿𝑥) = (𝑍𝐿𝑌)) | |
| 4 | 3 | breq1d 5135 | . 2 ⊢ (𝑥 = 𝑌 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴)) |
| 5 | isperp.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | isperp.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 7 | isperp.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 8 | isperp.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 9 | isperp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | isperp.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 11 | footeq.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 12 | footeq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 13 | footeq.1 | . . . 4 ⊢ (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴) | |
| 14 | 5, 6, 7, 8, 9, 10, 12, 11, 13 | footne 28686 | . . 3 ⊢ (𝜑 → ¬ 𝑍 ∈ 𝐴) |
| 15 | 5, 6, 7, 8, 9, 10, 11, 14 | foot 28685 | . 2 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (𝑍𝐿𝑥)(⟂G‘𝐺)𝐴) |
| 16 | footeq.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 17 | 5, 8, 7, 9, 10, 12 | tglnpt 28512 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 18 | 8, 9, 13 | perpln1 28673 | . . . . 5 ⊢ (𝜑 → (𝑋𝐿𝑍) ∈ ran 𝐿) |
| 19 | 5, 7, 8, 9, 17, 11, 18 | tglnne 28591 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝑍) |
| 20 | 5, 7, 8, 9, 17, 11, 19 | tglinecom 28598 | . . 3 ⊢ (𝜑 → (𝑋𝐿𝑍) = (𝑍𝐿𝑋)) |
| 21 | 20, 13 | eqbrtrrd 5149 | . 2 ⊢ (𝜑 → (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴) |
| 22 | 5, 8, 7, 9, 10, 16 | tglnpt 28512 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 23 | footeq.2 | . . . . . 6 ⊢ (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴) | |
| 24 | 8, 9, 23 | perpln1 28673 | . . . . 5 ⊢ (𝜑 → (𝑌𝐿𝑍) ∈ ran 𝐿) |
| 25 | 5, 7, 8, 9, 22, 11, 24 | tglnne 28591 | . . . 4 ⊢ (𝜑 → 𝑌 ≠ 𝑍) |
| 26 | 5, 7, 8, 9, 22, 11, 25 | tglinecom 28598 | . . 3 ⊢ (𝜑 → (𝑌𝐿𝑍) = (𝑍𝐿𝑌)) |
| 27 | 26, 23 | eqbrtrrd 5149 | . 2 ⊢ (𝜑 → (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴) |
| 28 | 2, 4, 15, 12, 16, 21, 27 | reu2eqd 3726 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ran crn 5668 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 distcds 17286 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 ⟂Gcperpg 28658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-oadd 8493 df-er 8728 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-n0 12511 df-xnn0 12584 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-s3 14871 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-cgrg 28474 df-leg 28546 df-mir 28616 df-rag 28657 df-perpg 28659 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |