MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footeq Structured version   Visualization version   GIF version

Theorem footeq 27085
Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
footeq.x (𝜑𝑋𝐴)
footeq.y (𝜑𝑌𝐴)
footeq.z (𝜑𝑍𝑃)
footeq.1 (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)
footeq.2 (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)
Assertion
Ref Expression
footeq (𝜑𝑋 = 𝑌)

Proof of Theorem footeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . 3 (𝑥 = 𝑋 → (𝑍𝐿𝑥) = (𝑍𝐿𝑋))
21breq1d 5084 . 2 (𝑥 = 𝑋 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴))
3 oveq2 7283 . . 3 (𝑥 = 𝑌 → (𝑍𝐿𝑥) = (𝑍𝐿𝑌))
43breq1d 5084 . 2 (𝑥 = 𝑌 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴))
5 isperp.p . . 3 𝑃 = (Base‘𝐺)
6 isperp.d . . 3 = (dist‘𝐺)
7 isperp.i . . 3 𝐼 = (Itv‘𝐺)
8 isperp.l . . 3 𝐿 = (LineG‘𝐺)
9 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
10 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
11 footeq.z . . 3 (𝜑𝑍𝑃)
12 footeq.x . . . 4 (𝜑𝑋𝐴)
13 footeq.1 . . . 4 (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)
145, 6, 7, 8, 9, 10, 12, 11, 13footne 27084 . . 3 (𝜑 → ¬ 𝑍𝐴)
155, 6, 7, 8, 9, 10, 11, 14foot 27083 . 2 (𝜑 → ∃!𝑥𝐴 (𝑍𝐿𝑥)(⟂G‘𝐺)𝐴)
16 footeq.y . 2 (𝜑𝑌𝐴)
175, 8, 7, 9, 10, 12tglnpt 26910 . . . 4 (𝜑𝑋𝑃)
188, 9, 13perpln1 27071 . . . . 5 (𝜑 → (𝑋𝐿𝑍) ∈ ran 𝐿)
195, 7, 8, 9, 17, 11, 18tglnne 26989 . . . 4 (𝜑𝑋𝑍)
205, 7, 8, 9, 17, 11, 19tglinecom 26996 . . 3 (𝜑 → (𝑋𝐿𝑍) = (𝑍𝐿𝑋))
2120, 13eqbrtrrd 5098 . 2 (𝜑 → (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴)
225, 8, 7, 9, 10, 16tglnpt 26910 . . . 4 (𝜑𝑌𝑃)
23 footeq.2 . . . . . 6 (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)
248, 9, 23perpln1 27071 . . . . 5 (𝜑 → (𝑌𝐿𝑍) ∈ ran 𝐿)
255, 7, 8, 9, 22, 11, 24tglnne 26989 . . . 4 (𝜑𝑌𝑍)
265, 7, 8, 9, 22, 11, 25tglinecom 26996 . . 3 (𝜑 → (𝑌𝐿𝑍) = (𝑍𝐿𝑌))
2726, 23eqbrtrrd 5098 . 2 (𝜑 → (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴)
282, 4, 15, 12, 16, 21, 27reu2eqd 3671 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  ⟂Gcperpg 27056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-cgrg 26872  df-leg 26944  df-mir 27014  df-rag 27055  df-perpg 27057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator