MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  footeq Structured version   Visualization version   GIF version

Theorem footeq 27287
Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
footeq.x (𝜑𝑋𝐴)
footeq.y (𝜑𝑌𝐴)
footeq.z (𝜑𝑍𝑃)
footeq.1 (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)
footeq.2 (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)
Assertion
Ref Expression
footeq (𝜑𝑋 = 𝑌)

Proof of Theorem footeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7337 . . 3 (𝑥 = 𝑋 → (𝑍𝐿𝑥) = (𝑍𝐿𝑋))
21breq1d 5099 . 2 (𝑥 = 𝑋 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴))
3 oveq2 7337 . . 3 (𝑥 = 𝑌 → (𝑍𝐿𝑥) = (𝑍𝐿𝑌))
43breq1d 5099 . 2 (𝑥 = 𝑌 → ((𝑍𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴))
5 isperp.p . . 3 𝑃 = (Base‘𝐺)
6 isperp.d . . 3 = (dist‘𝐺)
7 isperp.i . . 3 𝐼 = (Itv‘𝐺)
8 isperp.l . . 3 𝐿 = (LineG‘𝐺)
9 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
10 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
11 footeq.z . . 3 (𝜑𝑍𝑃)
12 footeq.x . . . 4 (𝜑𝑋𝐴)
13 footeq.1 . . . 4 (𝜑 → (𝑋𝐿𝑍)(⟂G‘𝐺)𝐴)
145, 6, 7, 8, 9, 10, 12, 11, 13footne 27286 . . 3 (𝜑 → ¬ 𝑍𝐴)
155, 6, 7, 8, 9, 10, 11, 14foot 27285 . 2 (𝜑 → ∃!𝑥𝐴 (𝑍𝐿𝑥)(⟂G‘𝐺)𝐴)
16 footeq.y . 2 (𝜑𝑌𝐴)
175, 8, 7, 9, 10, 12tglnpt 27112 . . . 4 (𝜑𝑋𝑃)
188, 9, 13perpln1 27273 . . . . 5 (𝜑 → (𝑋𝐿𝑍) ∈ ran 𝐿)
195, 7, 8, 9, 17, 11, 18tglnne 27191 . . . 4 (𝜑𝑋𝑍)
205, 7, 8, 9, 17, 11, 19tglinecom 27198 . . 3 (𝜑 → (𝑋𝐿𝑍) = (𝑍𝐿𝑋))
2120, 13eqbrtrrd 5113 . 2 (𝜑 → (𝑍𝐿𝑋)(⟂G‘𝐺)𝐴)
225, 8, 7, 9, 10, 16tglnpt 27112 . . . 4 (𝜑𝑌𝑃)
23 footeq.2 . . . . . 6 (𝜑 → (𝑌𝐿𝑍)(⟂G‘𝐺)𝐴)
248, 9, 23perpln1 27273 . . . . 5 (𝜑 → (𝑌𝐿𝑍) ∈ ran 𝐿)
255, 7, 8, 9, 22, 11, 24tglnne 27191 . . . 4 (𝜑𝑌𝑍)
265, 7, 8, 9, 22, 11, 25tglinecom 27198 . . 3 (𝜑 → (𝑌𝐿𝑍) = (𝑍𝐿𝑌))
2726, 23eqbrtrrd 5113 . 2 (𝜑 → (𝑍𝐿𝑌)(⟂G‘𝐺)𝐴)
282, 4, 15, 12, 16, 21, 27reu2eqd 3681 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105   class class class wbr 5089  ran crn 5615  cfv 6473  (class class class)co 7329  Basecbs 17001  distcds 17060  TarskiGcstrkg 26990  Itvcitv 26996  LineGclng 26997  ⟂Gcperpg 27258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-oadd 8363  df-er 8561  df-map 8680  df-pm 8681  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-dju 9750  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-n0 12327  df-xnn0 12399  df-z 12413  df-uz 12676  df-fz 13333  df-fzo 13476  df-hash 14138  df-word 14310  df-concat 14366  df-s1 14392  df-s2 14652  df-s3 14653  df-trkgc 27011  df-trkgb 27012  df-trkgcb 27013  df-trkg 27016  df-cgrg 27074  df-leg 27146  df-mir 27216  df-rag 27257  df-perpg 27259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator