![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > footeq | Structured version Visualization version GIF version |
Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020.) |
Ref | Expression |
---|---|
isperp.p | β’ π = (BaseβπΊ) |
isperp.d | β’ β = (distβπΊ) |
isperp.i | β’ πΌ = (ItvβπΊ) |
isperp.l | β’ πΏ = (LineGβπΊ) |
isperp.g | β’ (π β πΊ β TarskiG) |
isperp.a | β’ (π β π΄ β ran πΏ) |
footeq.x | β’ (π β π β π΄) |
footeq.y | β’ (π β π β π΄) |
footeq.z | β’ (π β π β π) |
footeq.1 | β’ (π β (ππΏπ)(βGβπΊ)π΄) |
footeq.2 | β’ (π β (ππΏπ)(βGβπΊ)π΄) |
Ref | Expression |
---|---|
footeq | β’ (π β π = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7413 | . . 3 β’ (π₯ = π β (ππΏπ₯) = (ππΏπ)) | |
2 | 1 | breq1d 5157 | . 2 β’ (π₯ = π β ((ππΏπ₯)(βGβπΊ)π΄ β (ππΏπ)(βGβπΊ)π΄)) |
3 | oveq2 7413 | . . 3 β’ (π₯ = π β (ππΏπ₯) = (ππΏπ)) | |
4 | 3 | breq1d 5157 | . 2 β’ (π₯ = π β ((ππΏπ₯)(βGβπΊ)π΄ β (ππΏπ)(βGβπΊ)π΄)) |
5 | isperp.p | . . 3 β’ π = (BaseβπΊ) | |
6 | isperp.d | . . 3 β’ β = (distβπΊ) | |
7 | isperp.i | . . 3 β’ πΌ = (ItvβπΊ) | |
8 | isperp.l | . . 3 β’ πΏ = (LineGβπΊ) | |
9 | isperp.g | . . 3 β’ (π β πΊ β TarskiG) | |
10 | isperp.a | . . 3 β’ (π β π΄ β ran πΏ) | |
11 | footeq.z | . . 3 β’ (π β π β π) | |
12 | footeq.x | . . . 4 β’ (π β π β π΄) | |
13 | footeq.1 | . . . 4 β’ (π β (ππΏπ)(βGβπΊ)π΄) | |
14 | 5, 6, 7, 8, 9, 10, 12, 11, 13 | footne 27963 | . . 3 β’ (π β Β¬ π β π΄) |
15 | 5, 6, 7, 8, 9, 10, 11, 14 | foot 27962 | . 2 β’ (π β β!π₯ β π΄ (ππΏπ₯)(βGβπΊ)π΄) |
16 | footeq.y | . 2 β’ (π β π β π΄) | |
17 | 5, 8, 7, 9, 10, 12 | tglnpt 27789 | . . . 4 β’ (π β π β π) |
18 | 8, 9, 13 | perpln1 27950 | . . . . 5 β’ (π β (ππΏπ) β ran πΏ) |
19 | 5, 7, 8, 9, 17, 11, 18 | tglnne 27868 | . . . 4 β’ (π β π β π) |
20 | 5, 7, 8, 9, 17, 11, 19 | tglinecom 27875 | . . 3 β’ (π β (ππΏπ) = (ππΏπ)) |
21 | 20, 13 | eqbrtrrd 5171 | . 2 β’ (π β (ππΏπ)(βGβπΊ)π΄) |
22 | 5, 8, 7, 9, 10, 16 | tglnpt 27789 | . . . 4 β’ (π β π β π) |
23 | footeq.2 | . . . . . 6 β’ (π β (ππΏπ)(βGβπΊ)π΄) | |
24 | 8, 9, 23 | perpln1 27950 | . . . . 5 β’ (π β (ππΏπ) β ran πΏ) |
25 | 5, 7, 8, 9, 22, 11, 24 | tglnne 27868 | . . . 4 β’ (π β π β π) |
26 | 5, 7, 8, 9, 22, 11, 25 | tglinecom 27875 | . . 3 β’ (π β (ππΏπ) = (ππΏπ)) |
27 | 26, 23 | eqbrtrrd 5171 | . 2 β’ (π β (ππΏπ)(βGβπΊ)π΄) |
28 | 2, 4, 15, 12, 16, 21, 27 | reu2eqd 3731 | 1 β’ (π β π = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 class class class wbr 5147 ran crn 5676 βcfv 6540 (class class class)co 7405 Basecbs 17140 distcds 17202 TarskiGcstrkg 27667 Itvcitv 27673 LineGclng 27674 βGcperpg 27935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-s2 14795 df-s3 14796 df-trkgc 27688 df-trkgb 27689 df-trkgcb 27690 df-trkg 27693 df-cgrg 27751 df-leg 27823 df-mir 27893 df-rag 27934 df-perpg 27936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |