Proof of Theorem reu2
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
2 | 1 | eu2 2611 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦))) |
3 | | df-reu 3070 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | | df-rex 3069 |
. . 3
⊢
(∃𝑥 ∈
𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | | df-ral 3068 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
6 | | 19.21v 1943 |
. . . . . 6
⊢
(∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
7 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
8 | | nfs1v 2155 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
9 | 7, 8 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) |
10 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
11 | | sbequ12 2247 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
12 | 10, 11 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
13 | 9, 12 | sbiev 2312 |
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
14 | 13 | anbi2i 622 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
15 | | an4 652 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
16 | 14, 15 | bitri 274 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑))) |
17 | 16 | imbi1i 349 |
. . . . . . . 8
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦)) |
18 | | impexp 450 |
. . . . . . . 8
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
19 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
20 | 17, 18, 19 | 3bitri 296 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
21 | 20 | albii 1823 |
. . . . . 6
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
22 | | df-ral 3068 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
23 | 22 | imbi2i 335 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))) |
24 | 6, 21, 23 | 3bitr4i 302 |
. . . . 5
⊢
(∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
25 | 24 | albii 1823 |
. . . 4
⊢
(∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
26 | 5, 25 | bitr4i 277 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦)) |
27 | 4, 26 | anbi12i 626 |
. 2
⊢
((∃𝑥 ∈
𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ [𝑦 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝑦))) |
28 | 2, 3, 27 | 3bitr4i 302 |
1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |