MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu2 Structured version   Visualization version   GIF version

Theorem reu2 3719
Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
reu2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu2
StepHypRef Expression
1 nfv 1908 . . 3 𝑦(𝑥𝐴𝜑)
21eu2 2691 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦)))
3 df-reu 3149 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
4 df-rex 3148 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
5 df-ral 3147 . . . 4 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
6 19.21v 1933 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
7 nfv 1908 . . . . . . . . . . . . 13 𝑥 𝑦𝐴
8 nfs1v 2267 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥]𝜑
97, 8nfan 1893 . . . . . . . . . . . 12 𝑥(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)
10 eleq1w 2899 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
11 sbequ12 2246 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
1210, 11anbi12d 630 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
139, 12sbiev 2324 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
1413anbi2i 622 . . . . . . . . . 10 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
15 an4 652 . . . . . . . . . 10 (((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1614, 15bitri 276 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1716imbi1i 351 . . . . . . . 8 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦))
18 impexp 451 . . . . . . . 8 ((((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
19 impexp 451 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
2017, 18, 193bitri 298 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
2120albii 1813 . . . . . 6 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
22 df-ral 3147 . . . . . . 7 (∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2322imbi2i 337 . . . . . 6 ((𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
246, 21, 233bitr4i 304 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2524albii 1813 . . . 4 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
265, 25bitr4i 279 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦))
274, 26anbi12i 626 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦)))
282, 3, 273bitr4i 304 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1528  wex 1773  [wsb 2062  wcel 2107  ∃!weu 2650  wral 3142  wrex 3143  ∃!wreu 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-10 2138  ax-11 2153  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clel 2897  df-ral 3147  df-rex 3148  df-reu 3149
This theorem is referenced by:  reu2eqd  3730  2nreu  4395  rexreusng  4615  disjinfi  41321
  Copyright terms: Public domain W3C validator