MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu2 Structured version   Visualization version   GIF version

Theorem reu2 3660
Description: A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
reu2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu2
StepHypRef Expression
1 nfv 1917 . . 3 𝑦(𝑥𝐴𝜑)
21eu2 2611 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦)))
3 df-reu 3072 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
4 df-rex 3070 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
5 df-ral 3069 . . . 4 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
6 19.21v 1942 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
7 nfv 1917 . . . . . . . . . . . . 13 𝑥 𝑦𝐴
8 nfs1v 2153 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥]𝜑
97, 8nfan 1902 . . . . . . . . . . . 12 𝑥(𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)
10 eleq1w 2821 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
11 sbequ12 2244 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
1210, 11anbi12d 631 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
139, 12sbiev 2309 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝜑) ↔ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑))
1413anbi2i 623 . . . . . . . . . 10 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)))
15 an4 653 . . . . . . . . . 10 (((𝑥𝐴𝜑) ∧ (𝑦𝐴 ∧ [𝑦 / 𝑥]𝜑)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1614, 15bitri 274 . . . . . . . . 9 (((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)))
1716imbi1i 350 . . . . . . . 8 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦))
18 impexp 451 . . . . . . . 8 ((((𝑥𝐴𝑦𝐴) ∧ (𝜑 ∧ [𝑦 / 𝑥]𝜑)) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
19 impexp 451 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
2017, 18, 193bitri 297 . . . . . . 7 ((((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
2120albii 1822 . . . . . 6 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
22 df-ral 3069 . . . . . . 7 (∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦(𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2322imbi2i 336 . . . . . 6 ((𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
246, 21, 233bitr4i 303 . . . . 5 (∀𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
2524albii 1822 . . . 4 (∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
265, 25bitr4i 277 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦))
274, 26anbi12i 627 . 2 ((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∀𝑥𝑦(((𝑥𝐴𝜑) ∧ [𝑦 / 𝑥](𝑥𝐴𝜑)) → 𝑥 = 𝑦)))
282, 3, 273bitr4i 303 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴𝑦𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  [wsb 2067  wcel 2106  ∃!weu 2568  wral 3064  wrex 3065  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clel 2816  df-ral 3069  df-rex 3070  df-reu 3072
This theorem is referenced by:  reu2eqd  3671  2nreu  4375  rexreusng  4615  disjinfi  42731
  Copyright terms: Public domain W3C validator