Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uspgredg2vlem | Structured version Visualization version GIF version |
Description: Lemma for uspgredg2v 27700. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.) |
Ref | Expression |
---|---|
uspgredg2v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uspgredg2v.e | ⊢ 𝐸 = (Edg‘𝐺) |
uspgredg2v.a | ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
Ref | Expression |
---|---|
uspgredg2vlem | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2826 | . . 3 ⊢ (𝑒 = 𝑌 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑌)) | |
2 | uspgredg2v.a | . . 3 ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
3 | 1, 2 | elrab2 3637 | . 2 ⊢ (𝑌 ∈ 𝐴 ↔ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) |
4 | simpl 483 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝐺 ∈ USPGraph) | |
5 | uspgredg2v.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 5 | eleq2i 2829 | . . . . . 6 ⊢ (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ (Edg‘𝐺)) |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝑌 ∈ 𝐸 → 𝑌 ∈ (Edg‘𝐺)) |
8 | 7 | ad2antrl 725 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝑌 ∈ (Edg‘𝐺)) |
9 | simprr 770 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝑁 ∈ 𝑌) | |
10 | 4, 8, 9 | 3jca 1127 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → (𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌)) |
11 | uspgredg2vtxeu 27696 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌) → ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}) | |
12 | uspgredg2v.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | reueq1 3389 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧})) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}) |
15 | 11, 14 | sylibr 233 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌) → ∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) |
16 | riotacl 7290 | . . 3 ⊢ (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) | |
17 | 10, 15, 16 | 3syl 18 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
18 | 3, 17 | sylan2b 594 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃!wreu 3348 {crab 3404 {cpr 4573 ‘cfv 6465 ℩crio 7271 Vtxcvtx 27475 Edgcedg 27526 USPGraphcuspgr 27627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-oadd 8348 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-n0 12307 df-xnn0 12379 df-z 12393 df-uz 12656 df-fz 13313 df-hash 14118 df-edg 27527 df-upgr 27561 df-uspgr 27629 |
This theorem is referenced by: uspgredg2v 27700 |
Copyright terms: Public domain | W3C validator |