MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1vwmgr Structured version   Visualization version   GIF version

Theorem 1vwmgr 30142
Description: Every graph with one vertex (which may be connect with itself by (multiple) loops!) is a windmill graph. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Assertion
Ref Expression
1vwmgr ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝐴,,𝑣,𝑤   ,𝐸   ,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐸(𝑤,𝑣)   𝑋(𝑤,𝑣,)

Proof of Theorem 1vwmgr
StepHypRef Expression
1 ral0 4513 . . . 4 𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)
2 sneq 4639 . . . . . . . 8 ( = 𝐴 → {} = {𝐴})
32difeq2d 4119 . . . . . . 7 ( = 𝐴 → ({𝐴} ∖ {}) = ({𝐴} ∖ {𝐴}))
4 difid 4371 . . . . . . 7 ({𝐴} ∖ {𝐴}) = ∅
53, 4eqtrdi 2781 . . . . . 6 ( = 𝐴 → ({𝐴} ∖ {}) = ∅)
6 preq2 4739 . . . . . . . 8 ( = 𝐴 → {𝑣, } = {𝑣, 𝐴})
76eleq1d 2810 . . . . . . 7 ( = 𝐴 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐴} ∈ 𝐸))
8 reueq1 3402 . . . . . . . 8 (({𝐴} ∖ {}) = ({𝐴} ∖ {𝐴}) → (∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
93, 8syl 17 . . . . . . 7 ( = 𝐴 → (∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
107, 9anbi12d 630 . . . . . 6 ( = 𝐴 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
115, 10raleqbidv 3330 . . . . 5 ( = 𝐴 → (∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
1211rexsng 4679 . . . 4 (𝐴𝑋 → (∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
131, 12mpbiri 257 . . 3 (𝐴𝑋 → ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
1413adantr 479 . 2 ((𝐴𝑋𝑉 = {𝐴}) → ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
15 difeq1 4112 . . . . 5 (𝑉 = {𝐴} → (𝑉 ∖ {}) = ({𝐴} ∖ {}))
16 reueq1 3402 . . . . . . 7 ((𝑉 ∖ {}) = ({𝐴} ∖ {}) → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
1715, 16syl 17 . . . . . 6 (𝑉 = {𝐴} → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
1817anbi2d 628 . . . . 5 (𝑉 = {𝐴} → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1915, 18raleqbidv 3330 . . . 4 (𝑉 = {𝐴} → (∀𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2019rexeqbi1dv 3324 . . 3 (𝑉 = {𝐴} → (∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2120adantl 480 . 2 ((𝐴𝑋𝑉 = {𝐴}) → (∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
2214, 21mpbird 256 1 ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060  ∃!wreu 3362  cdif 3942  c0 4323  {csn 4629  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-nul 4324  df-sn 4630  df-pr 4632
This theorem is referenced by:  1to2vfriswmgr  30145
  Copyright terms: Public domain W3C validator