Proof of Theorem 1vwmgr
Step | Hyp | Ref
| Expression |
1 | | ral0 4443 |
. . . 4
⊢
∀𝑣 ∈
∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) |
2 | | sneq 4571 |
. . . . . . . 8
⊢ (ℎ = 𝐴 → {ℎ} = {𝐴}) |
3 | 2 | difeq2d 4057 |
. . . . . . 7
⊢ (ℎ = 𝐴 → ({𝐴} ∖ {ℎ}) = ({𝐴} ∖ {𝐴})) |
4 | | difid 4304 |
. . . . . . 7
⊢ ({𝐴} ∖ {𝐴}) = ∅ |
5 | 3, 4 | eqtrdi 2794 |
. . . . . 6
⊢ (ℎ = 𝐴 → ({𝐴} ∖ {ℎ}) = ∅) |
6 | | preq2 4670 |
. . . . . . . 8
⊢ (ℎ = 𝐴 → {𝑣, ℎ} = {𝑣, 𝐴}) |
7 | 6 | eleq1d 2823 |
. . . . . . 7
⊢ (ℎ = 𝐴 → ({𝑣, ℎ} ∈ 𝐸 ↔ {𝑣, 𝐴} ∈ 𝐸)) |
8 | | reueq1 3344 |
. . . . . . . 8
⊢ (({𝐴} ∖ {ℎ}) = ({𝐴} ∖ {𝐴}) → (∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)) |
9 | 3, 8 | syl 17 |
. . . . . . 7
⊢ (ℎ = 𝐴 → (∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)) |
10 | 7, 9 | anbi12d 631 |
. . . . . 6
⊢ (ℎ = 𝐴 → (({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))) |
11 | 5, 10 | raleqbidv 3336 |
. . . . 5
⊢ (ℎ = 𝐴 → (∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))) |
12 | 11 | rexsng 4610 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (∃ℎ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ∅ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))) |
13 | 1, 12 | mpbiri 257 |
. . 3
⊢ (𝐴 ∈ 𝑋 → ∃ℎ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) |
14 | 13 | adantr 481 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴}) → ∃ℎ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) |
15 | | difeq1 4050 |
. . . . 5
⊢ (𝑉 = {𝐴} → (𝑉 ∖ {ℎ}) = ({𝐴} ∖ {ℎ})) |
16 | | reueq1 3344 |
. . . . . . 7
⊢ ((𝑉 ∖ {ℎ}) = ({𝐴} ∖ {ℎ}) → (∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) |
17 | 15, 16 | syl 17 |
. . . . . 6
⊢ (𝑉 = {𝐴} → (∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) |
18 | 17 | anbi2d 629 |
. . . . 5
⊢ (𝑉 = {𝐴} → (({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
19 | 15, 18 | raleqbidv 3336 |
. . . 4
⊢ (𝑉 = {𝐴} → (∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
20 | 19 | rexeqbi1dv 3341 |
. . 3
⊢ (𝑉 = {𝐴} → (∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ℎ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
21 | 20 | adantl 482 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴}) → (∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ℎ ∈ {𝐴}∀𝑣 ∈ ({𝐴} ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴} ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸))) |
22 | 14, 21 | mpbird 256 |
1
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑉 = {𝐴}) → ∃ℎ ∈ 𝑉 ∀𝑣 ∈ (𝑉 ∖ {ℎ})({𝑣, ℎ} ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {ℎ}){𝑣, 𝑤} ∈ 𝐸)) |