MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr1v Structured version   Visualization version   GIF version

Theorem frgr1v 30252
Description: Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr1v ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )

Proof of Theorem frgr1v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ USGraph)
2 ral0 4488 . . . . 5 𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
3 sneq 4611 . . . . . . . . 9 (𝑘 = 𝑁 → {𝑘} = {𝑁})
43difeq2d 4101 . . . . . . . 8 (𝑘 = 𝑁 → ({𝑁} ∖ {𝑘}) = ({𝑁} ∖ {𝑁}))
5 difid 4351 . . . . . . . 8 ({𝑁} ∖ {𝑁}) = ∅
64, 5eqtrdi 2786 . . . . . . 7 (𝑘 = 𝑁 → ({𝑁} ∖ {𝑘}) = ∅)
7 preq2 4710 . . . . . . . . . 10 (𝑘 = 𝑁 → {𝑥, 𝑘} = {𝑥, 𝑁})
87preq1d 4715 . . . . . . . . 9 (𝑘 = 𝑁 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑁}, {𝑥, 𝑙}})
98sseq1d 3990 . . . . . . . 8 (𝑘 = 𝑁 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
109reubidv 3377 . . . . . . 7 (𝑘 = 𝑁 → (∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
116, 10raleqbidv 3325 . . . . . 6 (𝑘 = 𝑁 → (∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1211ralsng 4651 . . . . 5 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
132, 12mpbiri 258 . . . 4 (𝑁 ∈ V → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
14 snprc 4693 . . . . 5 𝑁 ∈ V ↔ {𝑁} = ∅)
15 rzal 4484 . . . . 5 ({𝑁} = ∅ → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1614, 15sylbi 217 . . . 4 𝑁 ∈ V → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1713, 16pm2.61i 182 . . 3 𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
18 id 22 . . . . 5 ((Vtx‘𝐺) = {𝑁} → (Vtx‘𝐺) = {𝑁})
19 difeq1 4094 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝑁} ∖ {𝑘}))
20 reueq1 3396 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2119, 20raleqbidv 3325 . . . . 5 ((Vtx‘𝐺) = {𝑁} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2218, 21raleqbidv 3325 . . . 4 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2322adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2417, 23mpbiri 258 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
25 eqid 2735 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
26 eqid 2735 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
2725, 26isfrgr 30241 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
281, 24, 27sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  ∃!wreu 3357  Vcvv 3459  cdif 3923  wss 3926  c0 4308  {csn 4601  {cpr 4603  cfv 6531  Vtxcvtx 28975  Edgcedg 29026  USGraphcusgr 29128   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-frgr 30240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator