MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr1v Structured version   Visualization version   GIF version

Theorem frgr1v 30233
Description: Any graph with (at most) one vertex is a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
frgr1v ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )

Proof of Theorem frgr1v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ USGraph)
2 ral0 4466 . . . . 5 𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
3 sneq 4589 . . . . . . . . 9 (𝑘 = 𝑁 → {𝑘} = {𝑁})
43difeq2d 4079 . . . . . . . 8 (𝑘 = 𝑁 → ({𝑁} ∖ {𝑘}) = ({𝑁} ∖ {𝑁}))
5 difid 4329 . . . . . . . 8 ({𝑁} ∖ {𝑁}) = ∅
64, 5eqtrdi 2780 . . . . . . 7 (𝑘 = 𝑁 → ({𝑁} ∖ {𝑘}) = ∅)
7 preq2 4688 . . . . . . . . . 10 (𝑘 = 𝑁 → {𝑥, 𝑘} = {𝑥, 𝑁})
87preq1d 4693 . . . . . . . . 9 (𝑘 = 𝑁 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑁}, {𝑥, 𝑙}})
98sseq1d 3969 . . . . . . . 8 (𝑘 = 𝑁 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
109reubidv 3363 . . . . . . 7 (𝑘 = 𝑁 → (∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
116, 10raleqbidv 3310 . . . . . 6 (𝑘 = 𝑁 → (∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
1211ralsng 4629 . . . . 5 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ∅ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑁}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
132, 12mpbiri 258 . . . 4 (𝑁 ∈ V → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
14 snprc 4671 . . . . 5 𝑁 ∈ V ↔ {𝑁} = ∅)
15 rzal 4462 . . . . 5 ({𝑁} = ∅ → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1614, 15sylbi 217 . . . 4 𝑁 ∈ V → ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
1713, 16pm2.61i 182 . . 3 𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)
18 id 22 . . . . 5 ((Vtx‘𝐺) = {𝑁} → (Vtx‘𝐺) = {𝑁})
19 difeq1 4072 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝑁} ∖ {𝑘}))
20 reueq1 3379 . . . . . 6 ((Vtx‘𝐺) = {𝑁} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2119, 20raleqbidv 3310 . . . . 5 ((Vtx‘𝐺) = {𝑁} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2218, 21raleqbidv 3310 . . . 4 ((Vtx‘𝐺) = {𝑁} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2322adantl 481 . . 3 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝑁}∀𝑙 ∈ ({𝑁} ∖ {𝑘})∃!𝑥 ∈ {𝑁} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2417, 23mpbiri 258 . 2 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
25 eqid 2729 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
26 eqid 2729 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
2725, 26isfrgr 30222 . 2 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
281, 24, 27sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ (Vtx‘𝐺) = {𝑁}) → 𝐺 ∈ FriendGraph )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  Vcvv 3438  cdif 3902  wss 3905  c0 4286  {csn 4579  {cpr 4581  cfv 6486  Vtxcvtx 28959  Edgcedg 29010  USGraphcusgr 29112   FriendGraph cfrgr 30220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-frgr 30221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator