MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2v Structured version   Visualization version   GIF version

Theorem uspgredg2v 29158
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v 𝑉 = (Vtx‘𝐺)
uspgredg2v.e 𝐸 = (Edg‘𝐺)
uspgredg2v.a 𝐴 = {𝑒𝐸𝑁𝑒}
uspgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
Assertion
Ref Expression
uspgredg2v ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑒,𝐸   𝑧,𝐺   𝑒,𝑁   𝑧,𝑁   𝑧,𝑉   𝑦,𝐴   𝑦,𝐺   𝑦,𝑁,𝑧   𝑦,𝑉   𝑦,𝑒
Allowed substitution hints:   𝐴(𝑧,𝑒)   𝐸(𝑦,𝑧)   𝐹(𝑦,𝑧,𝑒)   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem uspgredg2v
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uspgredg2v.e . . . . 5 𝐸 = (Edg‘𝐺)
3 uspgredg2v.a . . . . 5 𝐴 = {𝑒𝐸𝑁𝑒}
41, 2, 3uspgredg2vlem 29157 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑦𝐴) → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
54ralrimiva 3126 . . 3 (𝐺 ∈ USPGraph → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
65adantr 480 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
7 preq2 4701 . . . . . . 7 (𝑧 = 𝑛 → {𝑁, 𝑧} = {𝑁, 𝑛})
87eqeq2d 2741 . . . . . 6 (𝑧 = 𝑛 → (𝑦 = {𝑁, 𝑧} ↔ 𝑦 = {𝑁, 𝑛}))
98cbvriotavw 7357 . . . . 5 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑛𝑉 𝑦 = {𝑁, 𝑛})
107eqeq2d 2741 . . . . . 6 (𝑧 = 𝑛 → (𝑥 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑛}))
1110cbvriotavw 7357 . . . . 5 (𝑧𝑉 𝑥 = {𝑁, 𝑧}) = (𝑛𝑉 𝑥 = {𝑁, 𝑛})
12 simpl 482 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐺 ∈ USPGraph)
13 eleq2w 2813 . . . . . . . . . . 11 (𝑒 = 𝑦 → (𝑁𝑒𝑁𝑦))
1413, 3elrab2 3665 . . . . . . . . . 10 (𝑦𝐴 ↔ (𝑦𝐸𝑁𝑦))
152eleq2i 2821 . . . . . . . . . . . 12 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1615biimpi 216 . . . . . . . . . . 11 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1716anim1i 615 . . . . . . . . . 10 ((𝑦𝐸𝑁𝑦) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1814, 17sylbi 217 . . . . . . . . 9 (𝑦𝐴 → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1918adantr 480 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
2012, 19anim12i 613 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
21 3anass 1094 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) ↔ (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
2220, 21sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
23 uspgredg2vtxeu 29154 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
24 reueq1 3391 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}))
251, 24ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
2623, 25sylibr 234 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
2722, 26syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
28 eleq2w 2813 . . . . . . . . . . 11 (𝑒 = 𝑥 → (𝑁𝑒𝑁𝑥))
2928, 3elrab2 3665 . . . . . . . . . 10 (𝑥𝐴 ↔ (𝑥𝐸𝑁𝑥))
302eleq2i 2821 . . . . . . . . . . . 12 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3130biimpi 216 . . . . . . . . . . 11 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3231anim1i 615 . . . . . . . . . 10 ((𝑥𝐸𝑁𝑥) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3329, 32sylbi 217 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3433adantl 481 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3512, 34anim12i 613 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
36 3anass 1094 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) ↔ (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
3735, 36sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
38 uspgredg2vtxeu 29154 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
39 reueq1 3391 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}))
401, 39ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
4138, 40sylibr 234 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
4237, 41syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
439, 11, 27, 42riotaeqimp 7373 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) ∧ (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧})) → 𝑦 = 𝑥)
4443ex 412 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
4544ralrimivva 3181 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
46 uspgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
47 eqeq1 2734 . . . 4 (𝑦 = 𝑥 → (𝑦 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑧}))
4847riotabidv 7349 . . 3 (𝑦 = 𝑥 → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}))
4946, 48f1mpt 7239 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)))
506, 45, 49sylanbrc 583 1 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  {crab 3408  {cpr 4594  cmpt 5191  1-1wf1 6511  cfv 6514  crio 7346  Vtxcvtx 28930  Edgcedg 28981  USPGraphcuspgr 29082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-edg 28982  df-upgr 29016  df-uspgr 29084
This theorem is referenced by:  uspgredgleord  29166
  Copyright terms: Public domain W3C validator