Step | Hyp | Ref
| Expression |
1 | | uspgredg2v.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | uspgredg2v.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
3 | | uspgredg2v.a |
. . . . 5
⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
4 | 1, 2, 3 | uspgredg2vlem 27493 |
. . . 4
⊢ ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉) |
5 | 4 | ralrimiva 3107 |
. . 3
⊢ (𝐺 ∈ USPGraph →
∀𝑦 ∈ 𝐴 (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉) |
6 | 5 | adantr 480 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑦 ∈ 𝐴 (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉) |
7 | | preq2 4667 |
. . . . . . 7
⊢ (𝑧 = 𝑛 → {𝑁, 𝑧} = {𝑁, 𝑛}) |
8 | 7 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑧 = 𝑛 → (𝑦 = {𝑁, 𝑧} ↔ 𝑦 = {𝑁, 𝑛})) |
9 | 8 | cbvriotavw 7222 |
. . . . 5
⊢
(℩𝑧
∈ 𝑉 𝑦 = {𝑁, 𝑧}) = (℩𝑛 ∈ 𝑉 𝑦 = {𝑁, 𝑛}) |
10 | 7 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑧 = 𝑛 → (𝑥 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑛})) |
11 | 10 | cbvriotavw 7222 |
. . . . 5
⊢
(℩𝑧
∈ 𝑉 𝑥 = {𝑁, 𝑧}) = (℩𝑛 ∈ 𝑉 𝑥 = {𝑁, 𝑛}) |
12 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) → 𝐺 ∈ USPGraph) |
13 | | eleq2w 2822 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑦 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑦)) |
14 | 13, 3 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐸 ∧ 𝑁 ∈ 𝑦)) |
15 | 2 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐸 ↔ 𝑦 ∈ (Edg‘𝐺)) |
16 | 15 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐸 → 𝑦 ∈ (Edg‘𝐺)) |
17 | 16 | anim1i 614 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐸 ∧ 𝑁 ∈ 𝑦) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦)) |
18 | 14, 17 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦)) |
19 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦)) |
20 | 12, 19 | anim12i 612 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦))) |
21 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦) ↔ (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦))) |
22 | 20, 21 | sylibr 233 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦)) |
23 | | uspgredg2vtxeu 27490 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}) |
24 | | reueq1 3335 |
. . . . . . . 8
⊢ (𝑉 = (Vtx‘𝐺) → (∃!𝑛 ∈ 𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})) |
25 | 1, 24 | ax-mp 5 |
. . . . . . 7
⊢
(∃!𝑛 ∈
𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}) |
26 | 23, 25 | sylibr 233 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑦) → ∃!𝑛 ∈ 𝑉 𝑦 = {𝑁, 𝑛}) |
27 | 22, 26 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ∃!𝑛 ∈ 𝑉 𝑦 = {𝑁, 𝑛}) |
28 | | eleq2w 2822 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑥 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑥)) |
29 | 28, 3 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐸 ∧ 𝑁 ∈ 𝑥)) |
30 | 2 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐸 ↔ 𝑥 ∈ (Edg‘𝐺)) |
31 | 30 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ (Edg‘𝐺)) |
32 | 31 | anim1i 614 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐸 ∧ 𝑁 ∈ 𝑥) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥)) |
33 | 29, 32 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥)) |
34 | 33 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥)) |
35 | 12, 34 | anim12i 612 |
. . . . . . 7
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥))) |
36 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥) ↔ (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥))) |
37 | 35, 36 | sylibr 233 |
. . . . . 6
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥)) |
38 | | uspgredg2vtxeu 27490 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}) |
39 | | reueq1 3335 |
. . . . . . . 8
⊢ (𝑉 = (Vtx‘𝐺) → (∃!𝑛 ∈ 𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})) |
40 | 1, 39 | ax-mp 5 |
. . . . . . 7
⊢
(∃!𝑛 ∈
𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}) |
41 | 38, 40 | sylibr 233 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑥) → ∃!𝑛 ∈ 𝑉 𝑥 = {𝑁, 𝑛}) |
42 | 37, 41 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ∃!𝑛 ∈ 𝑉 𝑥 = {𝑁, 𝑛}) |
43 | 9, 11, 27, 42 | riotaeqimp 7239 |
. . . 4
⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∧ (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) = (℩𝑧 ∈ 𝑉 𝑥 = {𝑁, 𝑧})) → 𝑦 = 𝑥) |
44 | 43 | ex 412 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) = (℩𝑧 ∈ 𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)) |
45 | 44 | ralrimivva 3114 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ((℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) = (℩𝑧 ∈ 𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)) |
46 | | uspgredg2v.f |
. . 3
⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧})) |
47 | | eqeq1 2742 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑦 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑧})) |
48 | 47 | riotabidv 7214 |
. . 3
⊢ (𝑦 = 𝑥 → (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) = (℩𝑧 ∈ 𝑉 𝑥 = {𝑁, 𝑧})) |
49 | 46, 48 | f1mpt 7115 |
. 2
⊢ (𝐹:𝐴–1-1→𝑉 ↔ (∀𝑦 ∈ 𝐴 (℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 ((℩𝑧 ∈ 𝑉 𝑦 = {𝑁, 𝑧}) = (℩𝑧 ∈ 𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))) |
50 | 6, 45, 49 | sylanbrc 582 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1→𝑉) |