MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2v Structured version   Visualization version   GIF version

Theorem uspgredg2v 29256
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v 𝑉 = (Vtx‘𝐺)
uspgredg2v.e 𝐸 = (Edg‘𝐺)
uspgredg2v.a 𝐴 = {𝑒𝐸𝑁𝑒}
uspgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
Assertion
Ref Expression
uspgredg2v ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑒,𝐸   𝑧,𝐺   𝑒,𝑁   𝑧,𝑁   𝑧,𝑉   𝑦,𝐴   𝑦,𝐺   𝑦,𝑁,𝑧   𝑦,𝑉   𝑦,𝑒
Allowed substitution hints:   𝐴(𝑧,𝑒)   𝐸(𝑦,𝑧)   𝐹(𝑦,𝑧,𝑒)   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem uspgredg2v
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uspgredg2v.e . . . . 5 𝐸 = (Edg‘𝐺)
3 uspgredg2v.a . . . . 5 𝐴 = {𝑒𝐸𝑁𝑒}
41, 2, 3uspgredg2vlem 29255 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑦𝐴) → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
54ralrimiva 3144 . . 3 (𝐺 ∈ USPGraph → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
65adantr 480 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
7 preq2 4739 . . . . . . 7 (𝑧 = 𝑛 → {𝑁, 𝑧} = {𝑁, 𝑛})
87eqeq2d 2746 . . . . . 6 (𝑧 = 𝑛 → (𝑦 = {𝑁, 𝑧} ↔ 𝑦 = {𝑁, 𝑛}))
98cbvriotavw 7398 . . . . 5 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑛𝑉 𝑦 = {𝑁, 𝑛})
107eqeq2d 2746 . . . . . 6 (𝑧 = 𝑛 → (𝑥 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑛}))
1110cbvriotavw 7398 . . . . 5 (𝑧𝑉 𝑥 = {𝑁, 𝑧}) = (𝑛𝑉 𝑥 = {𝑁, 𝑛})
12 simpl 482 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐺 ∈ USPGraph)
13 eleq2w 2823 . . . . . . . . . . 11 (𝑒 = 𝑦 → (𝑁𝑒𝑁𝑦))
1413, 3elrab2 3698 . . . . . . . . . 10 (𝑦𝐴 ↔ (𝑦𝐸𝑁𝑦))
152eleq2i 2831 . . . . . . . . . . . 12 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1615biimpi 216 . . . . . . . . . . 11 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1716anim1i 615 . . . . . . . . . 10 ((𝑦𝐸𝑁𝑦) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1814, 17sylbi 217 . . . . . . . . 9 (𝑦𝐴 → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1918adantr 480 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
2012, 19anim12i 613 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
21 3anass 1094 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) ↔ (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
2220, 21sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
23 uspgredg2vtxeu 29252 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
24 reueq1 3415 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}))
251, 24ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
2623, 25sylibr 234 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
2722, 26syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
28 eleq2w 2823 . . . . . . . . . . 11 (𝑒 = 𝑥 → (𝑁𝑒𝑁𝑥))
2928, 3elrab2 3698 . . . . . . . . . 10 (𝑥𝐴 ↔ (𝑥𝐸𝑁𝑥))
302eleq2i 2831 . . . . . . . . . . . 12 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3130biimpi 216 . . . . . . . . . . 11 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3231anim1i 615 . . . . . . . . . 10 ((𝑥𝐸𝑁𝑥) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3329, 32sylbi 217 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3433adantl 481 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3512, 34anim12i 613 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
36 3anass 1094 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) ↔ (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
3735, 36sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
38 uspgredg2vtxeu 29252 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
39 reueq1 3415 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}))
401, 39ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
4138, 40sylibr 234 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
4237, 41syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
439, 11, 27, 42riotaeqimp 7414 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) ∧ (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧})) → 𝑦 = 𝑥)
4443ex 412 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
4544ralrimivva 3200 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
46 uspgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
47 eqeq1 2739 . . . 4 (𝑦 = 𝑥 → (𝑦 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑧}))
4847riotabidv 7390 . . 3 (𝑦 = 𝑥 → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}))
4946, 48f1mpt 7281 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)))
506, 45, 49sylanbrc 583 1 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  ∃!wreu 3376  {crab 3433  {cpr 4633  cmpt 5231  1-1wf1 6560  cfv 6563  crio 7387  Vtxcvtx 29028  Edgcedg 29079  USPGraphcuspgr 29180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-upgr 29114  df-uspgr 29182
This theorem is referenced by:  uspgredgleord  29264
  Copyright terms: Public domain W3C validator