MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2v Structured version   Visualization version   GIF version

Theorem uspgredg2v 27494
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v 𝑉 = (Vtx‘𝐺)
uspgredg2v.e 𝐸 = (Edg‘𝐺)
uspgredg2v.a 𝐴 = {𝑒𝐸𝑁𝑒}
uspgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
Assertion
Ref Expression
uspgredg2v ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑒,𝐸   𝑧,𝐺   𝑒,𝑁   𝑧,𝑁   𝑧,𝑉   𝑦,𝐴   𝑦,𝐺   𝑦,𝑁,𝑧   𝑦,𝑉   𝑦,𝑒
Allowed substitution hints:   𝐴(𝑧,𝑒)   𝐸(𝑦,𝑧)   𝐹(𝑦,𝑧,𝑒)   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem uspgredg2v
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uspgredg2v.e . . . . 5 𝐸 = (Edg‘𝐺)
3 uspgredg2v.a . . . . 5 𝐴 = {𝑒𝐸𝑁𝑒}
41, 2, 3uspgredg2vlem 27493 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑦𝐴) → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
54ralrimiva 3107 . . 3 (𝐺 ∈ USPGraph → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
65adantr 480 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
7 preq2 4667 . . . . . . 7 (𝑧 = 𝑛 → {𝑁, 𝑧} = {𝑁, 𝑛})
87eqeq2d 2749 . . . . . 6 (𝑧 = 𝑛 → (𝑦 = {𝑁, 𝑧} ↔ 𝑦 = {𝑁, 𝑛}))
98cbvriotavw 7222 . . . . 5 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑛𝑉 𝑦 = {𝑁, 𝑛})
107eqeq2d 2749 . . . . . 6 (𝑧 = 𝑛 → (𝑥 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑛}))
1110cbvriotavw 7222 . . . . 5 (𝑧𝑉 𝑥 = {𝑁, 𝑧}) = (𝑛𝑉 𝑥 = {𝑁, 𝑛})
12 simpl 482 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐺 ∈ USPGraph)
13 eleq2w 2822 . . . . . . . . . . 11 (𝑒 = 𝑦 → (𝑁𝑒𝑁𝑦))
1413, 3elrab2 3620 . . . . . . . . . 10 (𝑦𝐴 ↔ (𝑦𝐸𝑁𝑦))
152eleq2i 2830 . . . . . . . . . . . 12 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1615biimpi 215 . . . . . . . . . . 11 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1716anim1i 614 . . . . . . . . . 10 ((𝑦𝐸𝑁𝑦) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1814, 17sylbi 216 . . . . . . . . 9 (𝑦𝐴 → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1918adantr 480 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
2012, 19anim12i 612 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
21 3anass 1093 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) ↔ (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
2220, 21sylibr 233 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
23 uspgredg2vtxeu 27490 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
24 reueq1 3335 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}))
251, 24ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
2623, 25sylibr 233 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
2722, 26syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
28 eleq2w 2822 . . . . . . . . . . 11 (𝑒 = 𝑥 → (𝑁𝑒𝑁𝑥))
2928, 3elrab2 3620 . . . . . . . . . 10 (𝑥𝐴 ↔ (𝑥𝐸𝑁𝑥))
302eleq2i 2830 . . . . . . . . . . . 12 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3130biimpi 215 . . . . . . . . . . 11 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3231anim1i 614 . . . . . . . . . 10 ((𝑥𝐸𝑁𝑥) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3329, 32sylbi 216 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3433adantl 481 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3512, 34anim12i 612 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
36 3anass 1093 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) ↔ (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
3735, 36sylibr 233 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
38 uspgredg2vtxeu 27490 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
39 reueq1 3335 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}))
401, 39ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
4138, 40sylibr 233 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
4237, 41syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
439, 11, 27, 42riotaeqimp 7239 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) ∧ (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧})) → 𝑦 = 𝑥)
4443ex 412 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
4544ralrimivva 3114 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
46 uspgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
47 eqeq1 2742 . . . 4 (𝑦 = 𝑥 → (𝑦 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑧}))
4847riotabidv 7214 . . 3 (𝑦 = 𝑥 → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}))
4946, 48f1mpt 7115 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)))
506, 45, 49sylanbrc 582 1 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  ∃!wreu 3065  {crab 3067  {cpr 4560  cmpt 5153  1-1wf1 6415  cfv 6418  crio 7211  Vtxcvtx 27269  Edgcedg 27320  USPGraphcuspgr 27421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-upgr 27355  df-uspgr 27423
This theorem is referenced by:  uspgredgleord  27502
  Copyright terms: Public domain W3C validator