MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgredg2v Structured version   Visualization version   GIF version

Theorem uspgredg2v 29259
Description: In a simple pseudograph, the mapping of edges having a fixed endpoint to the "other" vertex of the edge (which may be the fixed vertex itself in the case of a loop) is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v 𝑉 = (Vtx‘𝐺)
uspgredg2v.e 𝐸 = (Edg‘𝐺)
uspgredg2v.a 𝐴 = {𝑒𝐸𝑁𝑒}
uspgredg2v.f 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
Assertion
Ref Expression
uspgredg2v ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Distinct variable groups:   𝑒,𝐸   𝑧,𝐺   𝑒,𝑁   𝑧,𝑁   𝑧,𝑉   𝑦,𝐴   𝑦,𝐺   𝑦,𝑁,𝑧   𝑦,𝑉   𝑦,𝑒
Allowed substitution hints:   𝐴(𝑧,𝑒)   𝐸(𝑦,𝑧)   𝐹(𝑦,𝑧,𝑒)   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem uspgredg2v
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uspgredg2v.e . . . . 5 𝐸 = (Edg‘𝐺)
3 uspgredg2v.a . . . . 5 𝐴 = {𝑒𝐸𝑁𝑒}
41, 2, 3uspgredg2vlem 29258 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑦𝐴) → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
54ralrimiva 3152 . . 3 (𝐺 ∈ USPGraph → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
65adantr 480 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉)
7 preq2 4759 . . . . . . 7 (𝑧 = 𝑛 → {𝑁, 𝑧} = {𝑁, 𝑛})
87eqeq2d 2751 . . . . . 6 (𝑧 = 𝑛 → (𝑦 = {𝑁, 𝑧} ↔ 𝑦 = {𝑁, 𝑛}))
98cbvriotavw 7414 . . . . 5 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑛𝑉 𝑦 = {𝑁, 𝑛})
107eqeq2d 2751 . . . . . 6 (𝑧 = 𝑛 → (𝑥 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑛}))
1110cbvriotavw 7414 . . . . 5 (𝑧𝑉 𝑥 = {𝑁, 𝑧}) = (𝑛𝑉 𝑥 = {𝑁, 𝑛})
12 simpl 482 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐺 ∈ USPGraph)
13 eleq2w 2828 . . . . . . . . . . 11 (𝑒 = 𝑦 → (𝑁𝑒𝑁𝑦))
1413, 3elrab2 3711 . . . . . . . . . 10 (𝑦𝐴 ↔ (𝑦𝐸𝑁𝑦))
152eleq2i 2836 . . . . . . . . . . . 12 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1615biimpi 216 . . . . . . . . . . 11 (𝑦𝐸𝑦 ∈ (Edg‘𝐺))
1716anim1i 614 . . . . . . . . . 10 ((𝑦𝐸𝑁𝑦) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1814, 17sylbi 217 . . . . . . . . 9 (𝑦𝐴 → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
1918adantr 480 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
2012, 19anim12i 612 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
21 3anass 1095 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) ↔ (𝐺 ∈ USPGraph ∧ (𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦)))
2220, 21sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦))
23 uspgredg2vtxeu 29255 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
24 reueq1 3426 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛}))
251, 24ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑦 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑦 = {𝑁, 𝑛})
2623, 25sylibr 234 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐺) ∧ 𝑁𝑦) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
2722, 26syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑦 = {𝑁, 𝑛})
28 eleq2w 2828 . . . . . . . . . . 11 (𝑒 = 𝑥 → (𝑁𝑒𝑁𝑥))
2928, 3elrab2 3711 . . . . . . . . . 10 (𝑥𝐴 ↔ (𝑥𝐸𝑁𝑥))
302eleq2i 2836 . . . . . . . . . . . 12 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3130biimpi 216 . . . . . . . . . . 11 (𝑥𝐸𝑥 ∈ (Edg‘𝐺))
3231anim1i 614 . . . . . . . . . 10 ((𝑥𝐸𝑁𝑥) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3329, 32sylbi 217 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3433adantl 481 . . . . . . . 8 ((𝑦𝐴𝑥𝐴) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
3512, 34anim12i 612 . . . . . . 7 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
36 3anass 1095 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) ↔ (𝐺 ∈ USPGraph ∧ (𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥)))
3735, 36sylibr 234 . . . . . 6 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → (𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥))
38 uspgredg2vtxeu 29255 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
39 reueq1 3426 . . . . . . . 8 (𝑉 = (Vtx‘𝐺) → (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛}))
401, 39ax-mp 5 . . . . . . 7 (∃!𝑛𝑉 𝑥 = {𝑁, 𝑛} ↔ ∃!𝑛 ∈ (Vtx‘𝐺)𝑥 = {𝑁, 𝑛})
4138, 40sylibr 234 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ 𝑁𝑥) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
4237, 41syl 17 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ∃!𝑛𝑉 𝑥 = {𝑁, 𝑛})
439, 11, 27, 42riotaeqimp 7431 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) ∧ (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧})) → 𝑦 = 𝑥)
4443ex 412 . . 3 (((𝐺 ∈ USPGraph ∧ 𝑁𝑉) ∧ (𝑦𝐴𝑥𝐴)) → ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
4544ralrimivva 3208 . 2 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥))
46 uspgredg2v.f . . 3 𝐹 = (𝑦𝐴 ↦ (𝑧𝑉 𝑦 = {𝑁, 𝑧}))
47 eqeq1 2744 . . . 4 (𝑦 = 𝑥 → (𝑦 = {𝑁, 𝑧} ↔ 𝑥 = {𝑁, 𝑧}))
4847riotabidv 7406 . . 3 (𝑦 = 𝑥 → (𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}))
4946, 48f1mpt 7298 . 2 (𝐹:𝐴1-1𝑉 ↔ (∀𝑦𝐴 (𝑧𝑉 𝑦 = {𝑁, 𝑧}) ∈ 𝑉 ∧ ∀𝑦𝐴𝑥𝐴 ((𝑧𝑉 𝑦 = {𝑁, 𝑧}) = (𝑧𝑉 𝑥 = {𝑁, 𝑧}) → 𝑦 = 𝑥)))
506, 45, 49sylanbrc 582 1 ((𝐺 ∈ USPGraph ∧ 𝑁𝑉) → 𝐹:𝐴1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  {crab 3443  {cpr 4650  cmpt 5249  1-1wf1 6570  cfv 6573  crio 7403  Vtxcvtx 29031  Edgcedg 29082  USPGraphcuspgr 29183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-upgr 29117  df-uspgr 29185
This theorem is referenced by:  uspgredgleord  29267
  Copyright terms: Public domain W3C validator