| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralpr | Structured version Visualization version GIF version | ||
| Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralpr.1 | ⊢ 𝐴 ∈ V |
| ralpr.2 | ⊢ 𝐵 ∈ V |
| ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 3, 4 | ralprg 4646 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: fprb 7128 fzprval 13485 fvinim0ffz 13689 wwlktovf1 14864 xpsfrnel 17466 xpsle 17483 isdrs2 18212 pmtrsn 19431 iblcnlem1 25716 lfuhgr1v0e 29232 nbgr2vtx1edg 29328 nbuhgr2vtx1edgb 29330 umgr2v2evd2 29506 2wlklem 29644 dfpth2 29707 2wlkdlem5 29907 2wlkdlem10 29913 clwwlknonex2lem2 30088 3pthdlem1 30144 upgr4cycl4dv4e 30165 subfacp1lem3 35226 poimirlem1 37660 paireqne 47610 requad2 47722 ldepsnlinc 48608 rrx2pnecoorneor 48815 rrx2line 48840 rrx2linest 48842 |
| Copyright terms: Public domain | W3C validator |