| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralpr | Structured version Visualization version GIF version | ||
| Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralpr.1 | ⊢ 𝐴 ∈ V |
| ralpr.2 | ⊢ 𝐵 ∈ V |
| ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 3, 4 | ralprg 4656 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: fprb 7150 fzprval 13524 fvinim0ffz 13725 wwlktovf1 14900 xpsfrnel 17502 xpsle 17519 isdrs2 18248 pmtrsn 19434 iblcnlem1 25723 lfuhgr1v0e 29235 nbgr2vtx1edg 29331 nbuhgr2vtx1edgb 29333 umgr2v2evd2 29509 2wlklem 29647 dfpth2 29710 2wlkdlem5 29910 2wlkdlem10 29916 clwwlknonex2lem2 30088 3pthdlem1 30144 upgr4cycl4dv4e 30165 subfacp1lem3 35163 poimirlem1 37609 paireqne 47506 requad2 47618 ldepsnlinc 48491 rrx2pnecoorneor 48698 rrx2line 48723 rrx2linest 48725 |
| Copyright terms: Public domain | W3C validator |