MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralpr Structured version   Visualization version   GIF version

Theorem ralpr 4705
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1 𝐴 ∈ V
ralpr.2 𝐵 ∈ V
ralpr.3 (𝑥 = 𝐴 → (𝜑𝜓))
ralpr.4 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralpr (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2 𝐴 ∈ V
2 ralpr.2 . 2 𝐵 ∈ V
3 ralpr.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 ralpr.4 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
53, 4ralprg 4699 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
61, 2, 5mp2an 691 1 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-v 3477  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  fprb  7195  fzprval  13562  fvinim0ffz  13751  wwlktovf1  14908  xpsfrnel  17508  xpsle  17525  isdrs2  18259  pmtrsn  19387  iblcnlem1  25305  lfuhgr1v0e  28511  nbgr2vtx1edg  28607  nbuhgr2vtx1edgb  28609  umgr2v2evd2  28784  2wlklem  28924  2wlkdlem5  29183  2wlkdlem10  29189  clwwlknonex2lem2  29361  3pthdlem1  29417  upgr4cycl4dv4e  29438  subfacp1lem3  34173  poimirlem1  36489  paireqne  46179  requad2  46291  ldepsnlinc  47189  rrx2pnecoorneor  47401  rrx2line  47426  rrx2linest  47428
  Copyright terms: Public domain W3C validator