MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralpr Structured version   Visualization version   GIF version

Theorem ralpr 4705
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1 𝐴 ∈ V
ralpr.2 𝐵 ∈ V
ralpr.3 (𝑥 = 𝐴 → (𝜑𝜓))
ralpr.4 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralpr (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2 𝐴 ∈ V
2 ralpr.2 . 2 𝐵 ∈ V
3 ralpr.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 ralpr.4 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
53, 4ralprg 4701 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
61, 2, 5mp2an 692 1 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-v 3480  df-un 3968  df-sn 4632  df-pr 4634
This theorem is referenced by:  fprb  7214  fzprval  13622  fvinim0ffz  13822  wwlktovf1  14993  xpsfrnel  17609  xpsle  17626  isdrs2  18364  pmtrsn  19552  iblcnlem1  25838  lfuhgr1v0e  29286  nbgr2vtx1edg  29382  nbuhgr2vtx1edgb  29384  umgr2v2evd2  29560  2wlklem  29700  2wlkdlem5  29959  2wlkdlem10  29965  clwwlknonex2lem2  30137  3pthdlem1  30193  upgr4cycl4dv4e  30214  subfacp1lem3  35167  poimirlem1  37608  paireqne  47436  requad2  47548  ldepsnlinc  48354  rrx2pnecoorneor  48565  rrx2line  48590  rrx2linest  48592
  Copyright terms: Public domain W3C validator