MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralpr Structured version   Visualization version   GIF version

Theorem ralpr 4642
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1 𝐴 ∈ V
ralpr.2 𝐵 ∈ V
ralpr.3 (𝑥 = 𝐴 → (𝜑𝜓))
ralpr.4 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralpr (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2 𝐴 ∈ V
2 ralpr.2 . 2 𝐵 ∈ V
3 ralpr.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 ralpr.4 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
53, 4ralprg 4636 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
61, 2, 5mp2an 689 1 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  {cpr 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-v 3433  df-un 3897  df-sn 4568  df-pr 4570
This theorem is referenced by:  fprb  7066  fzprval  13316  fvinim0ffz  13504  wwlktovf1  14670  xpsfrnel  17271  xpsle  17288  isdrs2  18022  pmtrsn  19125  iblcnlem1  24950  lfuhgr1v0e  27619  nbgr2vtx1edg  27715  nbuhgr2vtx1edgb  27717  umgr2v2evd2  27892  2wlklem  28032  2wlkdlem5  28290  2wlkdlem10  28296  clwwlknonex2lem2  28468  3pthdlem1  28524  upgr4cycl4dv4e  28545  subfacp1lem3  33140  poimirlem1  35774  paireqne  44932  requad2  45044  ldepsnlinc  45818  rrx2pnecoorneor  46030  rrx2line  46055  rrx2linest  46057
  Copyright terms: Public domain W3C validator