| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralpr | Structured version Visualization version GIF version | ||
| Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralpr.1 | ⊢ 𝐴 ∈ V |
| ralpr.2 | ⊢ 𝐵 ∈ V |
| ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 3, 4 | ralprg 4672 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: fprb 7186 fzprval 13602 fvinim0ffz 13802 wwlktovf1 14976 xpsfrnel 17576 xpsle 17593 isdrs2 18318 pmtrsn 19500 iblcnlem1 25741 lfuhgr1v0e 29233 nbgr2vtx1edg 29329 nbuhgr2vtx1edgb 29331 umgr2v2evd2 29507 2wlklem 29647 dfpth2 29711 2wlkdlem5 29911 2wlkdlem10 29917 clwwlknonex2lem2 30089 3pthdlem1 30145 upgr4cycl4dv4e 30166 subfacp1lem3 35204 poimirlem1 37645 paireqne 47525 requad2 47637 ldepsnlinc 48484 rrx2pnecoorneor 48695 rrx2line 48720 rrx2linest 48722 |
| Copyright terms: Public domain | W3C validator |