MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralpr Structured version   Visualization version   GIF version

Theorem ralpr 4666
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1 𝐴 ∈ V
ralpr.2 𝐵 ∈ V
ralpr.3 (𝑥 = 𝐴 → (𝜑𝜓))
ralpr.4 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralpr (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2 𝐴 ∈ V
2 ralpr.2 . 2 𝐵 ∈ V
3 ralpr.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 ralpr.4 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
53, 4ralprg 4660 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
61, 2, 5mp2an 691 1 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  Vcvv 3448  {cpr 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-v 3450  df-un 3920  df-sn 4592  df-pr 4594
This theorem is referenced by:  fprb  7148  fzprval  13509  fvinim0ffz  13698  wwlktovf1  14853  xpsfrnel  17451  xpsle  17468  isdrs2  18202  pmtrsn  19308  iblcnlem1  25168  lfuhgr1v0e  28244  nbgr2vtx1edg  28340  nbuhgr2vtx1edgb  28342  umgr2v2evd2  28517  2wlklem  28657  2wlkdlem5  28916  2wlkdlem10  28922  clwwlknonex2lem2  29094  3pthdlem1  29150  upgr4cycl4dv4e  29171  subfacp1lem3  33816  poimirlem1  36108  paireqne  45777  requad2  45889  ldepsnlinc  46663  rrx2pnecoorneor  46875  rrx2line  46900  rrx2linest  46902
  Copyright terms: Public domain W3C validator