Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralpr | Structured version Visualization version GIF version |
Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralpr.1 | ⊢ 𝐴 ∈ V |
ralpr.2 | ⊢ 𝐵 ∈ V |
ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
5 | 3, 4 | ralprg 4636 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
6 | 1, 2, 5 | mp2an 689 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 {cpr 4569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-v 3433 df-un 3897 df-sn 4568 df-pr 4570 |
This theorem is referenced by: fprb 7066 fzprval 13316 fvinim0ffz 13504 wwlktovf1 14670 xpsfrnel 17271 xpsle 17288 isdrs2 18022 pmtrsn 19125 iblcnlem1 24950 lfuhgr1v0e 27619 nbgr2vtx1edg 27715 nbuhgr2vtx1edgb 27717 umgr2v2evd2 27892 2wlklem 28032 2wlkdlem5 28290 2wlkdlem10 28296 clwwlknonex2lem2 28468 3pthdlem1 28524 upgr4cycl4dv4e 28545 subfacp1lem3 33140 poimirlem1 35774 paireqne 44932 requad2 45044 ldepsnlinc 45818 rrx2pnecoorneor 46030 rrx2line 46055 rrx2linest 46057 |
Copyright terms: Public domain | W3C validator |