| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralpr | Structured version Visualization version GIF version | ||
| Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| ralpr.1 | ⊢ 𝐴 ∈ V |
| ralpr.2 | ⊢ 𝐵 ∈ V |
| ralpr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ralpr.4 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralpr | ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralpr.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | ralpr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | ralpr.4 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 5 | 3, 4 | ralprg 4663 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒))) |
| 6 | 1, 2, 5 | mp2an 692 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: fprb 7171 fzprval 13553 fvinim0ffz 13754 wwlktovf1 14930 xpsfrnel 17532 xpsle 17549 isdrs2 18274 pmtrsn 19456 iblcnlem1 25696 lfuhgr1v0e 29188 nbgr2vtx1edg 29284 nbuhgr2vtx1edgb 29286 umgr2v2evd2 29462 2wlklem 29602 dfpth2 29666 2wlkdlem5 29866 2wlkdlem10 29872 clwwlknonex2lem2 30044 3pthdlem1 30100 upgr4cycl4dv4e 30121 subfacp1lem3 35176 poimirlem1 37622 paireqne 47516 requad2 47628 ldepsnlinc 48501 rrx2pnecoorneor 48708 rrx2line 48733 rrx2linest 48735 |
| Copyright terms: Public domain | W3C validator |