Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmresel Structured version   Visualization version   GIF version

Theorem rhmresel 43670
Description: An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.)
Hypothesis
Ref Expression
rhmresel.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌))

Proof of Theorem rhmresel
StepHypRef Expression
1 rhmresel.h . . . . . 6 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
21adantr 473 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
32oveqd 6991 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌))
4 ovres 7128 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RingHom 𝑌))
54adantl 474 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RingHom 𝑌))
63, 5eqtrd 2808 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
76eleq2d 2845 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RingHom 𝑌)))
87biimp3a 1448 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050   × cxp 5401  cres 5405  (class class class)co 6974   RingHom crh 19199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-xp 5409  df-res 5415  df-iota 6149  df-fv 6193  df-ov 6977
This theorem is referenced by:  rhmsubcsetclem2  43682  rhmsubcrngclem2  43688
  Copyright terms: Public domain W3C validator