Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmresel Structured version   Visualization version   GIF version

Theorem rhmresel 45568
Description: An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.)
Hypothesis
Ref Expression
rhmresel.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌))

Proof of Theorem rhmresel
StepHypRef Expression
1 rhmresel.h . . . . . 6 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
21adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
32oveqd 7292 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌))
4 ovres 7438 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RingHom 𝑌))
54adantl 482 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RingHom 𝑌))
63, 5eqtrd 2778 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌))
76eleq2d 2824 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RingHom 𝑌)))
87biimp3a 1468 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   × cxp 5587  cres 5591  (class class class)co 7275   RingHom crh 19956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  rhmsubcsetclem2  45580  rhmsubcrngclem2  45586
  Copyright terms: Public domain W3C validator