![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmresel | Structured version Visualization version GIF version |
Description: An element of the unital ring homomorphisms restricted to a subset of unital rings is a unital ring homomorphism. (Contributed by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rhmresel.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmresel | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmresel.h | . . . . . 6 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
2 | 1 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
3 | 2 | oveqd 7443 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐻𝑌) = (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌)) |
4 | ovres 7593 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RingHom 𝑌)) | |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋( RingHom ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RingHom 𝑌)) |
6 | 3, 5 | eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐻𝑌) = (𝑋 RingHom 𝑌)) |
7 | 6 | eleq2d 2815 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RingHom 𝑌))) |
8 | 7 | biimp3a 1465 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RingHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 × cxp 5680 ↾ cres 5684 (class class class)co 7426 RingHom crh 20415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-res 5694 df-iota 6505 df-fv 6561 df-ov 7429 |
This theorem is referenced by: rhmsubcsetclem2 20601 rhmsubcrngclem2 20607 |
Copyright terms: Public domain | W3C validator |