Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmresfn Structured version   Visualization version   GIF version

Theorem rhmresfn 46897
Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.)
Hypotheses
Ref Expression
rhmresfn.b (𝜑𝐵 = (𝑈 ∩ Ring))
rhmresfn.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmresfn (𝜑𝐻 Fn (𝐵 × 𝐵))

Proof of Theorem rhmresfn
StepHypRef Expression
1 rhmfn 46711 . . 3 RingHom Fn (Ring × Ring)
2 rhmresfn.b . . . . 5 (𝜑𝐵 = (𝑈 ∩ Ring))
3 inss2 4229 . . . . 5 (𝑈 ∩ Ring) ⊆ Ring
42, 3eqsstrdi 4036 . . . 4 (𝜑𝐵 ⊆ Ring)
5 xpss12 5691 . . . 4 ((𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring) → (𝐵 × 𝐵) ⊆ (Ring × Ring))
64, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ (Ring × Ring))
7 fnssres 6673 . . 3 (( RingHom Fn (Ring × Ring) ∧ (𝐵 × 𝐵) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
81, 6, 7sylancr 587 . 2 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9 rhmresfn.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
109fneq1d 6642 . 2 (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)))
118, 10mpbird 256 1 (𝜑𝐻 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3947  wss 3948   × cxp 5674  cres 5678   Fn wfn 6538  Ringcrg 20055   RingHom crh 20247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-0g 17386  df-mhm 18670  df-ghm 19089  df-mgp 19987  df-ur 20004  df-ring 20057  df-rnghom 20250
This theorem is referenced by:  ringcbas  46899  ringchomfval  46900  ringchomfeqhom  46903  ringccofval  46904  dfringc2  46906  rhmsubcsetc  46911  ringcid  46913  rhmsubcrngc  46917  rngcresringcat  46918  funcringcsetc  46923
  Copyright terms: Public domain W3C validator