![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmresfn | Structured version Visualization version GIF version |
Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rhmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
rhmresfn.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmfn 20401 | . . 3 ⊢ RingHom Fn (Ring × Ring) | |
2 | rhmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
3 | inss2 4224 | . . . . 5 ⊢ (𝑈 ∩ Ring) ⊆ Ring | |
4 | 2, 3 | eqsstrdi 4031 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Ring) |
5 | xpss12 5684 | . . . 4 ⊢ ((𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring) → (𝐵 × 𝐵) ⊆ (Ring × Ring)) | |
6 | 4, 4, 5 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Ring × Ring)) |
7 | fnssres 6667 | . . 3 ⊢ (( RingHom Fn (Ring × Ring) ∧ (𝐵 × 𝐵) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
8 | 1, 6, 7 | sylancr 586 | . 2 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
9 | rhmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
10 | 9 | fneq1d 6636 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
11 | 8, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∩ cin 3942 ⊆ wss 3943 × cxp 5667 ↾ cres 5671 Fn wfn 6532 Ringcrg 20138 RingHom crh 20371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mhm 18713 df-ghm 19139 df-mgp 20040 df-ur 20087 df-ring 20140 df-rhm 20374 |
This theorem is referenced by: ringcbas 20546 ringchomfval 20547 ringchomfeqhom 20550 ringccofval 20551 dfringc2 20553 rhmsubcsetc 20558 ringcid 20560 rhmsubcrngc 20564 rngcresringcat 20565 funcringcsetc 20570 |
Copyright terms: Public domain | W3C validator |