Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmresfn | Structured version Visualization version GIF version |
Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rhmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
rhmresfn.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmfn 45428 | . . 3 ⊢ RingHom Fn (Ring × Ring) | |
2 | rhmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
3 | inss2 4168 | . . . . 5 ⊢ (𝑈 ∩ Ring) ⊆ Ring | |
4 | 2, 3 | eqsstrdi 3979 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Ring) |
5 | xpss12 5603 | . . . 4 ⊢ ((𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring) → (𝐵 × 𝐵) ⊆ (Ring × Ring)) | |
6 | 4, 4, 5 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Ring × Ring)) |
7 | fnssres 6551 | . . 3 ⊢ (( RingHom Fn (Ring × Ring) ∧ (𝐵 × 𝐵) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
8 | 1, 6, 7 | sylancr 586 | . 2 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
9 | rhmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
10 | 9 | fneq1d 6522 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
11 | 8, 10 | mpbird 256 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∩ cin 3890 ⊆ wss 3891 × cxp 5586 ↾ cres 5590 Fn wfn 6425 Ringcrg 19764 RingHom crh 19937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-0g 17133 df-mhm 18411 df-ghm 18813 df-mgp 19702 df-ur 19719 df-ring 19766 df-rnghom 19940 |
This theorem is referenced by: ringcbas 45521 ringchomfval 45522 ringchomfeqhom 45525 ringccofval 45526 dfringc2 45528 rhmsubcsetc 45533 ringcid 45535 rhmsubcrngc 45539 rngcresringcat 45540 funcringcsetc 45545 |
Copyright terms: Public domain | W3C validator |