Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmresfn Structured version   Visualization version   GIF version

Theorem rhmresfn 42857
Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.)
Hypotheses
Ref Expression
rhmresfn.b (𝜑𝐵 = (𝑈 ∩ Ring))
rhmresfn.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmresfn (𝜑𝐻 Fn (𝐵 × 𝐵))

Proof of Theorem rhmresfn
StepHypRef Expression
1 rhmfn 42766 . . 3 RingHom Fn (Ring × Ring)
2 rhmresfn.b . . . . 5 (𝜑𝐵 = (𝑈 ∩ Ring))
3 inss2 4059 . . . . 5 (𝑈 ∩ Ring) ⊆ Ring
42, 3syl6eqss 3881 . . . 4 (𝜑𝐵 ⊆ Ring)
5 xpss12 5358 . . . 4 ((𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring) → (𝐵 × 𝐵) ⊆ (Ring × Ring))
64, 4, 5syl2anc 581 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ (Ring × Ring))
7 fnssres 6238 . . 3 (( RingHom Fn (Ring × Ring) ∧ (𝐵 × 𝐵) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
81, 6, 7sylancr 583 . 2 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
9 rhmresfn.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
109fneq1d 6215 . 2 (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)))
118, 10mpbird 249 1 (𝜑𝐻 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  cin 3798  wss 3799   × cxp 5341  cres 5345   Fn wfn 6119  Ringcrg 18902   RingHom crh 19069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-plusg 16319  df-0g 16456  df-mhm 17689  df-ghm 18010  df-mgp 18845  df-ur 18857  df-ring 18904  df-rnghom 19072
This theorem is referenced by:  ringcbas  42859  ringchomfval  42860  ringchomfeqhom  42863  ringccofval  42864  dfringc2  42866  rhmsubcsetc  42871  ringcid  42873  rhmsubcrngc  42877  rngcresringcat  42878  funcringcsetc  42883
  Copyright terms: Public domain W3C validator