![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmresfn | Structured version Visualization version GIF version |
Description: The class of unital ring homomorphisms restricted to subsets of unital rings is a function. (Contributed by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rhmresfn.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
rhmresfn.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmresfn | ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmfn 20481 | . . 3 ⊢ RingHom Fn (Ring × Ring) | |
2 | rhmresfn.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) | |
3 | inss2 4231 | . . . . 5 ⊢ (𝑈 ∩ Ring) ⊆ Ring | |
4 | 2, 3 | eqsstrdi 4034 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ Ring) |
5 | xpss12 5697 | . . . 4 ⊢ ((𝐵 ⊆ Ring ∧ 𝐵 ⊆ Ring) → (𝐵 × 𝐵) ⊆ (Ring × Ring)) | |
6 | 4, 4, 5 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐵 × 𝐵) ⊆ (Ring × Ring)) |
7 | fnssres 6684 | . . 3 ⊢ (( RingHom Fn (Ring × Ring) ∧ (𝐵 × 𝐵) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) | |
8 | 1, 6, 7 | sylancr 585 | . 2 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
9 | rhmresfn.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
10 | 9 | fneq1d 6653 | . 2 ⊢ (𝜑 → (𝐻 Fn (𝐵 × 𝐵) ↔ ( RingHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))) |
11 | 8, 10 | mpbird 256 | 1 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∩ cin 3946 ⊆ wss 3947 × cxp 5680 ↾ cres 5684 Fn wfn 6549 Ringcrg 20216 RingHom crh 20451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-0g 17456 df-mhm 18773 df-ghm 19207 df-mgp 20118 df-ur 20165 df-ring 20218 df-rhm 20454 |
This theorem is referenced by: ringcbas 20628 ringchomfval 20629 ringchomfeqhom 20632 ringccofval 20633 dfringc2 20635 rhmsubcsetc 20640 ringcid 20642 rhmsubcrngc 20646 rngcresringcat 20647 funcringcsetc 20652 |
Copyright terms: Public domain | W3C validator |