Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcrngclem2 Structured version   Visualization version   GIF version

Theorem rhmsubcrngclem2 45586
Description: Lemma 2 for rhmsubcrngc 45587. (Contributed by AV, 12-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐶 = (RngCat‘𝑈)
rhmsubcrngc.u (𝜑𝑈𝑉)
rhmsubcrngc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcrngc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmsubcrngclem2 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝑥,𝑈,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑈(𝑧,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcrngclem2
StepHypRef Expression
1 simpl 483 . . . . . . 7 ((𝜑𝑥𝐵) → 𝜑)
21ad2antrr 723 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
3 simpr 485 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝐵𝑧𝐵))
43adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐵𝑧𝐵))
5 simprr 770 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
6 rhmsubcrngc.h . . . . . . 7 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
76rhmresel 45568 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧))
82, 4, 5, 7syl3anc 1370 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RingHom 𝑧))
9 simpr 485 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
10 simpl 483 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
119, 10anim12i 613 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐵𝑦𝐵))
1211adantr 481 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
13 simprl 768 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
146rhmresel 45568 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦))
152, 12, 13, 14syl3anc 1370 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RingHom 𝑦))
16 rhmco 19981 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
178, 15, 16syl2anc 584 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
18 rhmsubcrngc.c . . . . 5 𝐶 = (RngCat‘𝑈)
19 rhmsubcrngc.u . . . . . . 7 (𝜑𝑈𝑉)
2019adantr 481 . . . . . 6 ((𝜑𝑥𝐵) → 𝑈𝑉)
2120ad2antrr 723 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
22 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
23 rhmsubcrngc.b . . . . . . . . 9 (𝜑𝐵 = (Ring ∩ 𝑈))
2423eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑥𝐵𝑥 ∈ (Ring ∩ 𝑈)))
25 elinel2 4130 . . . . . . . 8 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥𝑈)
2624, 25syl6bi 252 . . . . . . 7 (𝜑 → (𝑥𝐵𝑥𝑈))
2726imp 407 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝑈)
2827ad2antrr 723 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝑈)
2923eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Ring ∩ 𝑈)))
30 elinel2 4130 . . . . . . . . . . 11 (𝑦 ∈ (Ring ∩ 𝑈) → 𝑦𝑈)
3129, 30syl6bi 252 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦𝑈))
3231adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦𝐵𝑦𝑈))
3332com12 32 . . . . . . . 8 (𝑦𝐵 → ((𝜑𝑥𝐵) → 𝑦𝑈))
3433adantr 481 . . . . . . 7 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → 𝑦𝑈))
3534impcom 408 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝑈)
3635adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝑈)
3723eleq2d 2824 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ (Ring ∩ 𝑈)))
38 elinel2 4130 . . . . . . . . . 10 (𝑧 ∈ (Ring ∩ 𝑈) → 𝑧𝑈)
3937, 38syl6bi 252 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧𝑈))
4039adantr 481 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧𝐵𝑧𝑈))
4140adantld 491 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → 𝑧𝑈))
4241imp 407 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝑈)
4342adantr 481 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝑈)
44 simprl 768 . . . . . . . . . . . . . 14 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → 𝜑)
4544adantr 481 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑)
469anim1i 615 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐵𝑦𝐵))
4746ancoms 459 . . . . . . . . . . . . . 14 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑥𝐵𝑦𝐵))
4847adantr 481 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥𝐵𝑦𝐵))
49 simpr 485 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦))
5045, 48, 49, 14syl3anc 1370 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦))
51 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑥) = (Base‘𝑥)
52 eqid 2738 . . . . . . . . . . . . 13 (Base‘𝑦) = (Base‘𝑦)
5351, 52rhmf 19970 . . . . . . . . . . . 12 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5450, 53syl 17 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5554exp31 420 . . . . . . . . . 10 (𝑦𝐵 → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
5655adantr 481 . . . . . . . . 9 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
5756impcom 408 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5857com12 32 . . . . . . 7 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5958adantr 481 . . . . . 6 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6059impcom 408 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
6173expa 1117 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧))
62 eqid 2738 . . . . . . . . . . 11 (Base‘𝑧) = (Base‘𝑧)
6352, 62rhmf 19970 . . . . . . . . . 10 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6461, 63syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6564ex 413 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6665adantlr 712 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6766adantld 491 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6867imp 407 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6918, 21, 22, 28, 36, 43, 60, 68rngcco 45529 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
706adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
7170oveqdr 7303 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧))
72 ovres 7438 . . . . . . 7 ((𝑥𝐵𝑧𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧))
7372ad2ant2l 743 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧))
7471, 73eqtrd 2778 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
7574adantr 481 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
7617, 69, 753eltr4d 2854 . . 3 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
7776ralrimivva 3123 . 2 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
7877ralrimivva 3123 1 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cin 3886  cop 4567   × cxp 5587  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  compcco 16974  Ringcrg 19783   RingHom crh 19956  RngCatcrngc 45515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-hom 16986  df-cco 16987  df-0g 17152  df-resc 17523  df-estrc 17839  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-rnghom 19959  df-rnghomo 45445  df-rngc 45517
This theorem is referenced by:  rhmsubcrngc  45587
  Copyright terms: Public domain W3C validator