Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcrngclem2 Structured version   Visualization version   GIF version

Theorem rhmsubcrngclem2 44652
Description: Lemma 2 for rhmsubcrngc 44653. (Contributed by AV, 12-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐶 = (RngCat‘𝑈)
rhmsubcrngc.u (𝜑𝑈𝑉)
rhmsubcrngc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcrngc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmsubcrngclem2 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝑥,𝑈,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑈(𝑧,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcrngclem2
StepHypRef Expression
1 simpl 486 . . . . . . 7 ((𝜑𝑥𝐵) → 𝜑)
21ad2antrr 725 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑)
3 simpr 488 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦𝐵𝑧𝐵))
43adantr 484 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦𝐵𝑧𝐵))
5 simprr 772 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧))
6 rhmsubcrngc.h . . . . . . 7 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
76rhmresel 44634 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧))
82, 4, 5, 7syl3anc 1368 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RingHom 𝑧))
9 simpr 488 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥𝐵)
10 simpl 486 . . . . . . . 8 ((𝑦𝐵𝑧𝐵) → 𝑦𝐵)
119, 10anim12i 615 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐵𝑦𝐵))
1211adantr 484 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐵𝑦𝐵))
13 simprl 770 . . . . . 6 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦))
146rhmresel 44634 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦))
152, 12, 13, 14syl3anc 1368 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RingHom 𝑦))
16 rhmco 19485 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
178, 15, 16syl2anc 587 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔𝑓) ∈ (𝑥 RingHom 𝑧))
18 rhmsubcrngc.c . . . . 5 𝐶 = (RngCat‘𝑈)
19 rhmsubcrngc.u . . . . . . 7 (𝜑𝑈𝑉)
2019adantr 484 . . . . . 6 ((𝜑𝑥𝐵) → 𝑈𝑉)
2120ad2antrr 725 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈𝑉)
22 eqid 2798 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
23 rhmsubcrngc.b . . . . . . . . 9 (𝜑𝐵 = (Ring ∩ 𝑈))
2423eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑥𝐵𝑥 ∈ (Ring ∩ 𝑈)))
25 elinel2 4123 . . . . . . . 8 (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥𝑈)
2624, 25syl6bi 256 . . . . . . 7 (𝜑 → (𝑥𝐵𝑥𝑈))
2726imp 410 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝑈)
2827ad2antrr 725 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥𝑈)
2923eleq2d 2875 . . . . . . . . . . 11 (𝜑 → (𝑦𝐵𝑦 ∈ (Ring ∩ 𝑈)))
30 elinel2 4123 . . . . . . . . . . 11 (𝑦 ∈ (Ring ∩ 𝑈) → 𝑦𝑈)
3129, 30syl6bi 256 . . . . . . . . . 10 (𝜑 → (𝑦𝐵𝑦𝑈))
3231adantr 484 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦𝐵𝑦𝑈))
3332com12 32 . . . . . . . 8 (𝑦𝐵 → ((𝜑𝑥𝐵) → 𝑦𝑈))
3433adantr 484 . . . . . . 7 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → 𝑦𝑈))
3534impcom 411 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝑈)
3635adantr 484 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦𝑈)
3723eleq2d 2875 . . . . . . . . . 10 (𝜑 → (𝑧𝐵𝑧 ∈ (Ring ∩ 𝑈)))
38 elinel2 4123 . . . . . . . . . 10 (𝑧 ∈ (Ring ∩ 𝑈) → 𝑧𝑈)
3937, 38syl6bi 256 . . . . . . . . 9 (𝜑 → (𝑧𝐵𝑧𝑈))
4039adantr 484 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧𝐵𝑧𝑈))
4140adantld 494 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝑦𝐵𝑧𝐵) → 𝑧𝑈))
4241imp 410 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝑈)
4342adantr 484 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧𝑈)
44 simprl 770 . . . . . . . . . . . . . 14 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → 𝜑)
4544adantr 484 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑)
469anim1i 617 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥𝐵𝑦𝐵))
4746ancoms 462 . . . . . . . . . . . . . 14 ((𝑦𝐵 ∧ (𝜑𝑥𝐵)) → (𝑥𝐵𝑦𝐵))
4847adantr 484 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥𝐵𝑦𝐵))
49 simpr 488 . . . . . . . . . . . . 13 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦))
5045, 48, 49, 14syl3anc 1368 . . . . . . . . . . . 12 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦))
51 eqid 2798 . . . . . . . . . . . . 13 (Base‘𝑥) = (Base‘𝑥)
52 eqid 2798 . . . . . . . . . . . . 13 (Base‘𝑦) = (Base‘𝑦)
5351, 52rhmf 19474 . . . . . . . . . . . 12 (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5450, 53syl 17 . . . . . . . . . . 11 (((𝑦𝐵 ∧ (𝜑𝑥𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
5554exp31 423 . . . . . . . . . 10 (𝑦𝐵 → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
5655adantr 484 . . . . . . . . 9 ((𝑦𝐵𝑧𝐵) → ((𝜑𝑥𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))))
5756impcom 411 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5857com12 32 . . . . . . 7 (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
5958adantr 484 . . . . . 6 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))
6059impcom 411 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))
6173expa 1115 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧))
62 eqid 2798 . . . . . . . . . . 11 (Base‘𝑧) = (Base‘𝑧)
6352, 62rhmf 19474 . . . . . . . . . 10 (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6461, 63syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6564ex 416 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6665adantlr 714 . . . . . . 7 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6766adantld 494 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)))
6867imp 410 . . . . 5 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))
6918, 21, 22, 28, 36, 43, 60, 68rngcco 44595 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔𝑓))
706adantr 484 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
7170oveqdr 7163 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧))
72 ovres 7294 . . . . . . 7 ((𝑥𝐵𝑧𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧))
7372ad2ant2l 745 . . . . . 6 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧))
7471, 73eqtrd 2833 . . . . 5 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
7574adantr 484 . . . 4 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧))
7617, 69, 753eltr4d 2905 . . 3 ((((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
7776ralrimivva 3156 . 2 (((𝜑𝑥𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
7877ralrimivva 3156 1 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  cin 3880  cop 4531   × cxp 5517  cres 5521  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  compcco 16569  Ringcrg 19290   RingHom crh 19460  RngCatcrngc 44581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-hom 16581  df-cco 16582  df-0g 16707  df-resc 17073  df-estrc 17365  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-rnghom 19463  df-rnghomo 44511  df-rngc 44583
This theorem is referenced by:  rhmsubcrngc  44653
  Copyright terms: Public domain W3C validator