Proof of Theorem rhmsubcrngclem2
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
2 | 1 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑) |
3 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
4 | 3 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
5 | | simprr 769 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
6 | | rhmsubcrngc.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
7 | 6 | rhmresel 45456 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
8 | 2, 4, 5, 7 | syl3anc 1369 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
9 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
10 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
11 | 9, 10 | anim12i 612 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
13 | | simprl 767 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
14 | 6 | rhmresel 45456 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
15 | 2, 12, 13, 14 | syl3anc 1369 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
16 | | rhmco 19896 |
. . . . 5
⊢ ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
17 | 8, 15, 16 | syl2anc 583 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
18 | | rhmsubcrngc.c |
. . . . 5
⊢ 𝐶 = (RngCat‘𝑈) |
19 | | rhmsubcrngc.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
21 | 20 | ad2antrr 722 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) |
22 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
23 | | rhmsubcrngc.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
24 | 23 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
25 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ 𝑈) |
26 | 24, 25 | syl6bi 252 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
27 | 26 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
28 | 27 | ad2antrr 722 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ 𝑈) |
29 | 23 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Ring ∩ 𝑈))) |
30 | | elinel2 4126 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (Ring ∩ 𝑈) → 𝑦 ∈ 𝑈) |
31 | 29, 30 | syl6bi 252 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
33 | 32 | com12 32 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
34 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
35 | 34 | impcom 407 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝑈) |
36 | 35 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ 𝑈) |
37 | 23 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Ring ∩ 𝑈))) |
38 | | elinel2 4126 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (Ring ∩ 𝑈) → 𝑧 ∈ 𝑈) |
39 | 37, 38 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
41 | 40 | adantld 490 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝑈)) |
42 | 41 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝑈) |
43 | 42 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ 𝑈) |
44 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → 𝜑) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑) |
46 | 9 | anim1i 614 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
47 | 46 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
49 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦)) |
50 | 45, 48, 49, 14 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
51 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑥) =
(Base‘𝑥) |
52 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑦) =
(Base‘𝑦) |
53 | 51, 52 | rhmf 19885 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
54 | 50, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
55 | 54 | exp31 419 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
56 | 55 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
57 | 56 | impcom 407 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
58 | 57 | com12 32 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
59 | 58 | adantr 480 |
. . . . . 6
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
60 | 59 | impcom 407 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
61 | 7 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
62 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑧) =
(Base‘𝑧) |
63 | 52, 62 | rhmf 19885 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
64 | 61, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
65 | 64 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
66 | 65 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
67 | 66 | adantld 490 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
68 | 67 | imp 406 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
69 | 18, 21, 22, 28, 36, 43, 60, 68 | rngcco 45417 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
70 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
71 | 70 | oveqdr 7283 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧)) |
72 | | ovres 7416 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧)) |
73 | 72 | ad2ant2l 742 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧)) |
74 | 71, 73 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
75 | 74 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
76 | 17, 69, 75 | 3eltr4d 2854 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
77 | 76 | ralrimivva 3114 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
78 | 77 | ralrimivva 3114 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |