Proof of Theorem rhmsubcrngclem2
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| 2 | 1 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝜑) |
| 3 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
| 5 | | simprr 773 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦𝐻𝑧)) |
| 6 | | rhmsubcrngc.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| 7 | 6 | rhmresel 20649 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
| 8 | 2, 4, 5, 7 | syl3anc 1373 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
| 9 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 10 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 11 | 9, 10 | anim12i 613 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 13 | | simprl 771 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 14 | 6 | rhmresel 20649 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
| 15 | 2, 12, 13, 14 | syl3anc 1373 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
| 16 | | rhmco 20501 |
. . . . 5
⊢ ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (𝑥 RingHom 𝑦)) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 17 | 8, 15, 16 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔 ∘ 𝑓) ∈ (𝑥 RingHom 𝑧)) |
| 18 | | rhmsubcrngc.c |
. . . . 5
⊢ 𝐶 = (RngCat‘𝑈) |
| 19 | | rhmsubcrngc.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑈 ∈ 𝑉) |
| 21 | 20 | ad2antrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑈 ∈ 𝑉) |
| 22 | | eqid 2737 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 23 | | rhmsubcrngc.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| 24 | 23 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Ring ∩ 𝑈))) |
| 25 | | elinel2 4202 |
. . . . . . . 8
⊢ (𝑥 ∈ (Ring ∩ 𝑈) → 𝑥 ∈ 𝑈) |
| 26 | 24, 25 | biimtrdi 253 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈)) |
| 27 | 26 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝑈) |
| 28 | 27 | ad2antrr 726 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑥 ∈ 𝑈) |
| 29 | 23 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Ring ∩ 𝑈))) |
| 30 | | elinel2 4202 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (Ring ∩ 𝑈) → 𝑦 ∈ 𝑈) |
| 31 | 29, 30 | biimtrdi 253 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
| 32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈)) |
| 33 | 32 | com12 32 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
| 34 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑦 ∈ 𝑈)) |
| 35 | 34 | impcom 407 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝑈) |
| 36 | 35 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑦 ∈ 𝑈) |
| 37 | 23 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Ring ∩ 𝑈))) |
| 38 | | elinel2 4202 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (Ring ∩ 𝑈) → 𝑧 ∈ 𝑈) |
| 39 | 37, 38 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
| 40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈)) |
| 41 | 40 | adantld 490 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝑈)) |
| 42 | 41 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝑈) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑧 ∈ 𝑈) |
| 44 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → 𝜑) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝜑) |
| 46 | 9 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 47 | 46 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 48 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 49 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥𝐻𝑦)) |
| 50 | 45, 48, 49, 14 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓 ∈ (𝑥 RingHom 𝑦)) |
| 51 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑥) =
(Base‘𝑥) |
| 52 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑦) =
(Base‘𝑦) |
| 53 | 51, 52 | rhmf 20485 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝑥 RingHom 𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
| 54 | 50, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ 𝐵 ∧ (𝜑 ∧ 𝑥 ∈ 𝐵)) ∧ 𝑓 ∈ (𝑥𝐻𝑦)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
| 55 | 54 | exp31 419 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐵 → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
| 56 | 55 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)))) |
| 57 | 56 | impcom 407 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑓 ∈ (𝑥𝐻𝑦) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 58 | 57 | com12 32 |
. . . . . . 7
⊢ (𝑓 ∈ (𝑥𝐻𝑦) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 59 | 58 | adantr 480 |
. . . . . 6
⊢ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦))) |
| 60 | 59 | impcom 407 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑓:(Base‘𝑥)⟶(Base‘𝑦)) |
| 61 | 7 | 3expa 1119 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔 ∈ (𝑦 RingHom 𝑧)) |
| 62 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝑧) =
(Base‘𝑧) |
| 63 | 52, 62 | rhmf 20485 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝑦 RingHom 𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
| 64 | 61, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
| 65 | 64 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
| 66 | 65 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑔 ∈ (𝑦𝐻𝑧) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
| 67 | 66 | adantld 490 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧))) |
| 68 | 67 | imp 406 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → 𝑔:(Base‘𝑦)⟶(Base‘𝑧)) |
| 69 | 18, 21, 22, 28, 36, 43, 60, 68 | rngcco 20627 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔 ∘ 𝑓)) |
| 70 | 6 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| 71 | 70 | oveqdr 7459 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧)) |
| 72 | | ovres 7599 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧)) |
| 73 | 72 | ad2ant2l 746 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥( RingHom ↾ (𝐵 × 𝐵))𝑧) = (𝑥 RingHom 𝑧)) |
| 74 | 71, 73 | eqtrd 2777 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 75 | 74 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑥𝐻𝑧) = (𝑥 RingHom 𝑧)) |
| 76 | 17, 69, 75 | 3eltr4d 2856 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 77 | 76 | ralrimivva 3202 |
. 2
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 78 | 77 | ralrimivva 3202 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |