MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubcrngclem2 Structured version   Visualization version   GIF version

Theorem rhmsubcrngclem2 20589
Description: Lemma 2 for rhmsubcrngc 20590. (Contributed by AV, 12-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐢 = (RngCatβ€˜π‘ˆ)
rhmsubcrngc.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
rhmsubcrngc.b (πœ‘ β†’ 𝐡 = (Ring ∩ π‘ˆ))
rhmsubcrngc.h (πœ‘ β†’ 𝐻 = ( RingHom β†Ύ (𝐡 Γ— 𝐡)))
Assertion
Ref Expression
rhmsubcrngclem2 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 βˆ€π‘“ ∈ (π‘₯𝐻𝑦)βˆ€π‘” ∈ (𝑦𝐻𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
Distinct variable groups:   𝐡,𝑓,𝑔,π‘₯,𝑦,𝑧   𝐢,𝑓,𝑔,π‘₯,𝑦,𝑧   𝑓,𝐻,𝑔,π‘₯,𝑦,𝑧   π‘₯,π‘ˆ,𝑦   πœ‘,𝑓,𝑔,π‘₯,𝑦,𝑧
Allowed substitution hints:   π‘ˆ(𝑧,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem rhmsubcrngclem2
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ πœ‘)
21ad2antrr 725 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ πœ‘)
3 simpr 484 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡))
43adantr 480 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡))
5 simprr 772 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑔 ∈ (𝑦𝐻𝑧))
6 rhmsubcrngc.h . . . . . . 7 (πœ‘ β†’ 𝐻 = ( RingHom β†Ύ (𝐡 Γ— 𝐡)))
76rhmresel 20571 . . . . . 6 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ 𝑔 ∈ (𝑦 RingHom 𝑧))
82, 4, 5, 7syl3anc 1369 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑔 ∈ (𝑦 RingHom 𝑧))
9 simpr 484 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ 𝐡)
10 simpl 482 . . . . . . . 8 ((𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ 𝑦 ∈ 𝐡)
119, 10anim12i 612 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
1211adantr 480 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
13 simprl 770 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑓 ∈ (π‘₯𝐻𝑦))
146rhmresel 20571 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ 𝑓 ∈ (π‘₯𝐻𝑦)) β†’ 𝑓 ∈ (π‘₯ RingHom 𝑦))
152, 12, 13, 14syl3anc 1369 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑓 ∈ (π‘₯ RingHom 𝑦))
16 rhmco 20429 . . . . 5 ((𝑔 ∈ (𝑦 RingHom 𝑧) ∧ 𝑓 ∈ (π‘₯ RingHom 𝑦)) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
178, 15, 16syl2anc 583 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔 ∘ 𝑓) ∈ (π‘₯ RingHom 𝑧))
18 rhmsubcrngc.c . . . . 5 𝐢 = (RngCatβ€˜π‘ˆ)
19 rhmsubcrngc.u . . . . . . 7 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
2019adantr 480 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘ˆ ∈ 𝑉)
2120ad2antrr 725 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ π‘ˆ ∈ 𝑉)
22 eqid 2727 . . . . 5 (compβ€˜πΆ) = (compβ€˜πΆ)
23 rhmsubcrngc.b . . . . . . . . 9 (πœ‘ β†’ 𝐡 = (Ring ∩ π‘ˆ))
2423eleq2d 2814 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ 𝐡 ↔ π‘₯ ∈ (Ring ∩ π‘ˆ)))
25 elinel2 4192 . . . . . . . 8 (π‘₯ ∈ (Ring ∩ π‘ˆ) β†’ π‘₯ ∈ π‘ˆ)
2624, 25biimtrdi 252 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝐡 β†’ π‘₯ ∈ π‘ˆ))
2726imp 406 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ π‘₯ ∈ π‘ˆ)
2827ad2antrr 725 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ π‘₯ ∈ π‘ˆ)
2923eleq2d 2814 . . . . . . . . . . 11 (πœ‘ β†’ (𝑦 ∈ 𝐡 ↔ 𝑦 ∈ (Ring ∩ π‘ˆ)))
30 elinel2 4192 . . . . . . . . . . 11 (𝑦 ∈ (Ring ∩ π‘ˆ) β†’ 𝑦 ∈ π‘ˆ)
3129, 30biimtrdi 252 . . . . . . . . . 10 (πœ‘ β†’ (𝑦 ∈ 𝐡 β†’ 𝑦 ∈ π‘ˆ))
3231adantr 480 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝑦 ∈ 𝐡 β†’ 𝑦 ∈ π‘ˆ))
3332com12 32 . . . . . . . 8 (𝑦 ∈ 𝐡 β†’ ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝑦 ∈ π‘ˆ))
3433adantr 480 . . . . . . 7 ((𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝑦 ∈ π‘ˆ))
3534impcom 407 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ 𝑦 ∈ π‘ˆ)
3635adantr 480 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑦 ∈ π‘ˆ)
3723eleq2d 2814 . . . . . . . . . 10 (πœ‘ β†’ (𝑧 ∈ 𝐡 ↔ 𝑧 ∈ (Ring ∩ π‘ˆ)))
38 elinel2 4192 . . . . . . . . . 10 (𝑧 ∈ (Ring ∩ π‘ˆ) β†’ 𝑧 ∈ π‘ˆ)
3937, 38biimtrdi 252 . . . . . . . . 9 (πœ‘ β†’ (𝑧 ∈ 𝐡 β†’ 𝑧 ∈ π‘ˆ))
4039adantr 480 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝑧 ∈ 𝐡 β†’ 𝑧 ∈ π‘ˆ))
4140adantld 490 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ ((𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ 𝑧 ∈ π‘ˆ))
4241imp 406 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ 𝑧 ∈ π‘ˆ)
4342adantr 480 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑧 ∈ π‘ˆ)
44 simprl 770 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) β†’ πœ‘)
4544adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) ∧ 𝑓 ∈ (π‘₯𝐻𝑦)) β†’ πœ‘)
469anim1i 614 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
4746ancoms 458 . . . . . . . . . . . . . 14 ((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) β†’ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
4847adantr 480 . . . . . . . . . . . . 13 (((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) ∧ 𝑓 ∈ (π‘₯𝐻𝑦)) β†’ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡))
49 simpr 484 . . . . . . . . . . . . 13 (((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) ∧ 𝑓 ∈ (π‘₯𝐻𝑦)) β†’ 𝑓 ∈ (π‘₯𝐻𝑦))
5045, 48, 49, 14syl3anc 1369 . . . . . . . . . . . 12 (((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) ∧ 𝑓 ∈ (π‘₯𝐻𝑦)) β†’ 𝑓 ∈ (π‘₯ RingHom 𝑦))
51 eqid 2727 . . . . . . . . . . . . 13 (Baseβ€˜π‘₯) = (Baseβ€˜π‘₯)
52 eqid 2727 . . . . . . . . . . . . 13 (Baseβ€˜π‘¦) = (Baseβ€˜π‘¦)
5351, 52rhmf 20413 . . . . . . . . . . . 12 (𝑓 ∈ (π‘₯ RingHom 𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
5450, 53syl 17 . . . . . . . . . . 11 (((𝑦 ∈ 𝐡 ∧ (πœ‘ ∧ π‘₯ ∈ 𝐡)) ∧ 𝑓 ∈ (π‘₯𝐻𝑦)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
5554exp31 419 . . . . . . . . . 10 (𝑦 ∈ 𝐡 β†’ ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))))
5655adantr 480 . . . . . . . . 9 ((𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))))
5756impcom 407 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (𝑓 ∈ (π‘₯𝐻𝑦) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5857com12 32 . . . . . . 7 (𝑓 ∈ (π‘₯𝐻𝑦) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
5958adantr 480 . . . . . 6 ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦)))
6059impcom 407 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑓:(Baseβ€˜π‘₯)⟢(Baseβ€˜π‘¦))
6173expa 1116 . . . . . . . . . 10 (((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ 𝑔 ∈ (𝑦 RingHom 𝑧))
62 eqid 2727 . . . . . . . . . . 11 (Baseβ€˜π‘§) = (Baseβ€˜π‘§)
6352, 62rhmf 20413 . . . . . . . . . 10 (𝑔 ∈ (𝑦 RingHom 𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
6461, 63syl 17 . . . . . . . . 9 (((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
6564ex 412 . . . . . . . 8 ((πœ‘ ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6665adantlr 714 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (𝑔 ∈ (𝑦𝐻𝑧) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6766adantld 490 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ ((𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§)))
6867imp 406 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ 𝑔:(Baseβ€˜π‘¦)⟢(Baseβ€˜π‘§))
6918, 21, 22, 28, 36, 43, 60, 68rngcco 20549 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) = (𝑔 ∘ 𝑓))
706adantr 480 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ 𝐻 = ( RingHom β†Ύ (𝐡 Γ— 𝐡)))
7170oveqdr 7442 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (π‘₯𝐻𝑧) = (π‘₯( RingHom β†Ύ (𝐡 Γ— 𝐡))𝑧))
72 ovres 7581 . . . . . . 7 ((π‘₯ ∈ 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ (π‘₯( RingHom β†Ύ (𝐡 Γ— 𝐡))𝑧) = (π‘₯ RingHom 𝑧))
7372ad2ant2l 745 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (π‘₯( RingHom β†Ύ (𝐡 Γ— 𝐡))𝑧) = (π‘₯ RingHom 𝑧))
7471, 73eqtrd 2767 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
7574adantr 480 . . . 4 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (π‘₯𝐻𝑧) = (π‘₯ RingHom 𝑧))
7617, 69, 753eltr4d 2843 . . 3 ((((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) ∧ (𝑓 ∈ (π‘₯𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) β†’ (𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
7776ralrimivva 3195 . 2 (((πœ‘ ∧ π‘₯ ∈ 𝐡) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝐡)) β†’ βˆ€π‘“ ∈ (π‘₯𝐻𝑦)βˆ€π‘” ∈ (𝑦𝐻𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
7877ralrimivva 3195 1 ((πœ‘ ∧ π‘₯ ∈ 𝐡) β†’ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 βˆ€π‘“ ∈ (π‘₯𝐻𝑦)βˆ€π‘” ∈ (𝑦𝐻𝑧)(𝑔(⟨π‘₯, π‘¦βŸ©(compβ€˜πΆ)𝑧)𝑓) ∈ (π‘₯𝐻𝑧))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056   ∩ cin 3943  βŸ¨cop 4630   Γ— cxp 5670   β†Ύ cres 5674   ∘ ccom 5676  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  Basecbs 17171  compcco 17236  Ringcrg 20164   RingHom crh 20397  RngCatcrngc 20538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-hom 17248  df-cco 17249  df-0g 17414  df-resc 17785  df-estrc 18104  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-grp 18884  df-ghm 19159  df-mgp 20066  df-ur 20113  df-ring 20166  df-rnghm 20364  df-rhm 20400  df-rngc 20539
This theorem is referenced by:  rhmsubcrngc  20590
  Copyright terms: Public domain W3C validator