![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringcbas | Structured version Visualization version GIF version |
Description: Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
ringcbas.c | โข ๐ถ = (RingCatโ๐) |
ringcbas.b | โข ๐ต = (Baseโ๐ถ) |
ringcbas.u | โข (๐ โ ๐ โ ๐) |
Ref | Expression |
---|---|
ringcbas | โข (๐ โ ๐ต = (๐ โฉ Ring)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbas.c | . . . 4 โข ๐ถ = (RingCatโ๐) | |
2 | ringcbas.u | . . . 4 โข (๐ โ ๐ โ ๐) | |
3 | eqidd 2729 | . . . 4 โข (๐ โ (๐ โฉ Ring) = (๐ โฉ Ring)) | |
4 | eqidd 2729 | . . . 4 โข (๐ โ ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring))) = ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring)))) | |
5 | 1, 2, 3, 4 | ringcval 20594 | . . 3 โข (๐ โ ๐ถ = ((ExtStrCatโ๐) โพcat ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring))))) |
6 | 5 | fveq2d 6906 | . 2 โข (๐ โ (Baseโ๐ถ) = (Baseโ((ExtStrCatโ๐) โพcat ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring)))))) |
7 | ringcbas.b | . . 3 โข ๐ต = (Baseโ๐ถ) | |
8 | 7 | a1i 11 | . 2 โข (๐ โ ๐ต = (Baseโ๐ถ)) |
9 | eqid 2728 | . . 3 โข ((ExtStrCatโ๐) โพcat ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring)))) = ((ExtStrCatโ๐) โพcat ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring)))) | |
10 | eqid 2728 | . . 3 โข (Baseโ(ExtStrCatโ๐)) = (Baseโ(ExtStrCatโ๐)) | |
11 | fvexd 6917 | . . 3 โข (๐ โ (ExtStrCatโ๐) โ V) | |
12 | 3, 4 | rhmresfn 20595 | . . 3 โข (๐ โ ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring))) Fn ((๐ โฉ Ring) ร (๐ โฉ Ring))) |
13 | inss1 4231 | . . . 4 โข (๐ โฉ Ring) โ ๐ | |
14 | eqid 2728 | . . . . 5 โข (ExtStrCatโ๐) = (ExtStrCatโ๐) | |
15 | 14, 2 | estrcbas 18124 | . . . 4 โข (๐ โ ๐ = (Baseโ(ExtStrCatโ๐))) |
16 | 13, 15 | sseqtrid 4034 | . . 3 โข (๐ โ (๐ โฉ Ring) โ (Baseโ(ExtStrCatโ๐))) |
17 | 9, 10, 11, 12, 16 | rescbas 17821 | . 2 โข (๐ โ (๐ โฉ Ring) = (Baseโ((ExtStrCatโ๐) โพcat ( RingHom โพ ((๐ โฉ Ring) ร (๐ โฉ Ring)))))) |
18 | 6, 8, 17 | 3eqtr4d 2778 | 1 โข (๐ โ ๐ต = (๐ โฉ Ring)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 Vcvv 3473 โฉ cin 3948 ร cxp 5680 โพ cres 5684 โcfv 6553 (class class class)co 7426 Basecbs 17189 โพcat cresc 17800 ExtStrCatcestrc 18121 Ringcrg 20187 RingHom crh 20422 RingCatcringc 20592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-sets 17142 df-slot 17160 df-ndx 17172 df-base 17190 df-ress 17219 df-plusg 17255 df-hom 17266 df-cco 17267 df-0g 17432 df-resc 17803 df-estrc 18122 df-mhm 18749 df-ghm 19182 df-mgp 20089 df-ur 20136 df-ring 20189 df-rhm 20425 df-ringc 20593 |
This theorem is referenced by: ringchomfval 20598 ringchomfeqhom 20601 ringccofval 20602 rhmsubcsetclem1 20607 ringcid 20611 rhmsubcrngclem1 20613 ringcsect 20617 ringcbasbas 20620 funcringcsetc 20621 zrtermoringc 20622 zrninitoringc 20623 srhmsubclem2 20625 srhmsubc 20627 irinitoringc 21419 nzerooringczr 21420 funcringcsetcALTV2lem7 47454 funcringcsetcALTV2lem9 47456 |
Copyright terms: Public domain | W3C validator |