| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcl | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 20236 | . 2 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | ringcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 3 | mgpbas 20142 | . . 3 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 5 | ringcl.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 6 | 1, 5 | mgpplusg 20141 | . . 3 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 7 | 4, 6 | mndcl 18755 | . 2 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 8 | 2, 7 | syl3an1 1164 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Copyright terms: Public domain | W3C validator |