Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version |
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 19722 | . . 3 ⊢ mulGrp Fn V | |
2 | ssv 3945 | . . 3 ⊢ Ring ⊆ V | |
3 | fnssres 6555 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
5 | fvres 6793 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
6 | eqid 2738 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
7 | 6 | ringmgp 19789 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
8 | 5, 7 | eqeltrd 2839 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
9 | 8 | rgen 3074 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
10 | ffnfv 6992 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
11 | 4, 9, 10 | mpbir2an 708 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ↾ cres 5591 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 Mndcmnd 18385 mulGrpcmgp 19720 Ringcrg 19783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-mgp 19721 df-ring 19785 |
This theorem is referenced by: prdsringd 19851 prds1 19853 |
Copyright terms: Public domain | W3C validator |