MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpf Structured version   Visualization version   GIF version

Theorem mgpf 20213
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
mgpf (mulGrp ↾ Ring):Ring⟶Mnd

Proof of Theorem mgpf
StepHypRef Expression
1 fnmgp 20107 . . 3 mulGrp Fn V
2 ssv 3988 . . 3 Ring ⊆ V
3 fnssres 6666 . . 3 ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring)
41, 2, 3mp2an 692 . 2 (mulGrp ↾ Ring) Fn Ring
5 fvres 6900 . . . 4 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎))
6 eqid 2736 . . . . 5 (mulGrp‘𝑎) = (mulGrp‘𝑎)
76ringmgp 20204 . . . 4 (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd)
85, 7eqeltrd 2835 . . 3 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)
98rgen 3054 . 2 𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd
10 ffnfv 7114 . 2 ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd))
114, 9, 10mpbir2an 711 1 (mulGrp ↾ Ring):Ring⟶Mnd
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3052  Vcvv 3464  wss 3931  cres 5661   Fn wfn 6531  wf 6532  cfv 6536  Mndcmnd 18717  mulGrpcmgp 20105  Ringcrg 20198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-mgp 20106  df-ring 20200
This theorem is referenced by:  prdsringd  20286  prds1  20288
  Copyright terms: Public domain W3C validator