| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version | ||
| Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 20061 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3959 | . . 3 ⊢ Ring ⊆ V | |
| 3 | fnssres 6604 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
| 5 | fvres 6841 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | ringmgp 20158 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
| 8 | 5, 7 | eqeltrd 2831 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
| 9 | 8 | rgen 3049 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
| 10 | ffnfv 7052 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
| 11 | 4, 9, 10 | mpbir2an 711 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ↾ cres 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 Mndcmnd 18642 mulGrpcmgp 20059 Ringcrg 20152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-mgp 20060 df-ring 20154 |
| This theorem is referenced by: prdsringd 20240 prds1 20242 |
| Copyright terms: Public domain | W3C validator |