MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpf Structured version   Visualization version   GIF version

Theorem mgpf 19713
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
mgpf (mulGrp ↾ Ring):Ring⟶Mnd

Proof of Theorem mgpf
StepHypRef Expression
1 fnmgp 19637 . . 3 mulGrp Fn V
2 ssv 3941 . . 3 Ring ⊆ V
3 fnssres 6539 . . 3 ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring)
41, 2, 3mp2an 688 . 2 (mulGrp ↾ Ring) Fn Ring
5 fvres 6775 . . . 4 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎))
6 eqid 2738 . . . . 5 (mulGrp‘𝑎) = (mulGrp‘𝑎)
76ringmgp 19704 . . . 4 (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd)
85, 7eqeltrd 2839 . . 3 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)
98rgen 3073 . 2 𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd
10 ffnfv 6974 . 2 ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd))
114, 9, 10mpbir2an 707 1 (mulGrp ↾ Ring):Ring⟶Mnd
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3063  Vcvv 3422  wss 3883  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  Mndcmnd 18300  mulGrpcmgp 19635  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-mgp 19636  df-ring 19700
This theorem is referenced by:  prdsringd  19766  prds1  19768
  Copyright terms: Public domain W3C validator