Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version |
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 19817 | . . 3 ⊢ mulGrp Fn V | |
2 | ssv 3960 | . . 3 ⊢ Ring ⊆ V | |
3 | fnssres 6612 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
4 | 1, 2, 3 | mp2an 690 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
5 | fvres 6849 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
6 | eqid 2737 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
7 | 6 | ringmgp 19884 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
8 | 5, 7 | eqeltrd 2838 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
9 | 8 | rgen 3064 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
10 | ffnfv 7053 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
11 | 4, 9, 10 | mpbir2an 709 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3062 Vcvv 3442 ⊆ wss 3902 ↾ cres 5627 Fn wfn 6479 ⟶wf 6480 ‘cfv 6484 Mndcmnd 18483 mulGrpcmgp 19815 Ringcrg 19878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-mgp 19816 df-ring 19880 |
This theorem is referenced by: prdsringd 19946 prds1 19948 |
Copyright terms: Public domain | W3C validator |