MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpf Structured version   Visualization version   GIF version

Theorem mgpf 19893
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
mgpf (mulGrp ↾ Ring):Ring⟶Mnd

Proof of Theorem mgpf
StepHypRef Expression
1 fnmgp 19817 . . 3 mulGrp Fn V
2 ssv 3960 . . 3 Ring ⊆ V
3 fnssres 6612 . . 3 ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring)
41, 2, 3mp2an 690 . 2 (mulGrp ↾ Ring) Fn Ring
5 fvres 6849 . . . 4 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎))
6 eqid 2737 . . . . 5 (mulGrp‘𝑎) = (mulGrp‘𝑎)
76ringmgp 19884 . . . 4 (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd)
85, 7eqeltrd 2838 . . 3 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)
98rgen 3064 . 2 𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd
10 ffnfv 7053 . 2 ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd))
114, 9, 10mpbir2an 709 1 (mulGrp ↾ Ring):Ring⟶Mnd
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wral 3062  Vcvv 3442  wss 3902  cres 5627   Fn wfn 6479  wf 6480  cfv 6484  Mndcmnd 18483  mulGrpcmgp 19815  Ringcrg 19878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-ov 7345  df-mgp 19816  df-ring 19880
This theorem is referenced by:  prdsringd  19946  prds1  19948
  Copyright terms: Public domain W3C validator