| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version | ||
| Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 20051 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3971 | . . 3 ⊢ Ring ⊆ V | |
| 3 | fnssres 6641 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
| 5 | fvres 6877 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | ringmgp 20148 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
| 8 | 5, 7 | eqeltrd 2828 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
| 9 | 8 | rgen 3046 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
| 10 | ffnfv 7091 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
| 11 | 4, 9, 10 | mpbir2an 711 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 Mndcmnd 18661 mulGrpcmgp 20049 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-mgp 20050 df-ring 20144 |
| This theorem is referenced by: prdsringd 20230 prds1 20232 |
| Copyright terms: Public domain | W3C validator |