![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version |
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
Ref | Expression |
---|---|
mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmgp 20033 | . . 3 ⊢ mulGrp Fn V | |
2 | ssv 3999 | . . 3 ⊢ Ring ⊆ V | |
3 | fnssres 6664 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
5 | fvres 6901 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
6 | eqid 2724 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
7 | 6 | ringmgp 20136 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
8 | 5, 7 | eqeltrd 2825 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
9 | 8 | rgen 3055 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
10 | ffnfv 7111 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
11 | 4, 9, 10 | mpbir2an 708 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ⊆ wss 3941 ↾ cres 5669 Fn wfn 6529 ⟶wf 6530 ‘cfv 6534 Mndcmnd 18659 mulGrpcmgp 20031 Ringcrg 20130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-ov 7405 df-mgp 20032 df-ring 20132 |
This theorem is referenced by: prdsringd 20212 prds1 20214 |
Copyright terms: Public domain | W3C validator |