| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mgpf | Structured version Visualization version GIF version | ||
| Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| mgpf | ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 20062 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3955 | . . 3 ⊢ Ring ⊆ V | |
| 3 | fnssres 6609 | . . 3 ⊢ ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (mulGrp ↾ Ring) Fn Ring |
| 5 | fvres 6847 | . . . 4 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | ringmgp 20159 | . . . 4 ⊢ (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd) |
| 8 | 5, 7 | eqeltrd 2833 | . . 3 ⊢ (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd) |
| 9 | 8 | rgen 3050 | . 2 ⊢ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd |
| 10 | ffnfv 7058 | . 2 ⊢ ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)) | |
| 11 | 4, 9, 10 | mpbir2an 711 | 1 ⊢ (mulGrp ↾ Ring):Ring⟶Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ↾ cres 5621 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 Mndcmnd 18644 mulGrpcmgp 20060 Ringcrg 20153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-mgp 20061 df-ring 20155 |
| This theorem is referenced by: prdsringd 20241 prds1 20243 |
| Copyright terms: Public domain | W3C validator |