MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpf Structured version   Visualization version   GIF version

Theorem mgpf 20167
Description: Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
mgpf (mulGrp ↾ Ring):Ring⟶Mnd

Proof of Theorem mgpf
StepHypRef Expression
1 fnmgp 20061 . . 3 mulGrp Fn V
2 ssv 3959 . . 3 Ring ⊆ V
3 fnssres 6604 . . 3 ((mulGrp Fn V ∧ Ring ⊆ V) → (mulGrp ↾ Ring) Fn Ring)
41, 2, 3mp2an 692 . 2 (mulGrp ↾ Ring) Fn Ring
5 fvres 6841 . . . 4 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) = (mulGrp‘𝑎))
6 eqid 2731 . . . . 5 (mulGrp‘𝑎) = (mulGrp‘𝑎)
76ringmgp 20158 . . . 4 (𝑎 ∈ Ring → (mulGrp‘𝑎) ∈ Mnd)
85, 7eqeltrd 2831 . . 3 (𝑎 ∈ Ring → ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd)
98rgen 3049 . 2 𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd
10 ffnfv 7052 . 2 ((mulGrp ↾ Ring):Ring⟶Mnd ↔ ((mulGrp ↾ Ring) Fn Ring ∧ ∀𝑎 ∈ Ring ((mulGrp ↾ Ring)‘𝑎) ∈ Mnd))
114, 9, 10mpbir2an 711 1 (mulGrp ↾ Ring):Ring⟶Mnd
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wral 3047  Vcvv 3436  wss 3902  cres 5618   Fn wfn 6476  wf 6477  cfv 6481  Mndcmnd 18642  mulGrpcmgp 20059  Ringcrg 20152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-mgp 20060  df-ring 20154
This theorem is referenced by:  prdsringd  20240  prds1  20242
  Copyright terms: Public domain W3C validator