| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmgp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| rngmgp | ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | rngmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | eqid 2731 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrng 20073 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Smgrpcsgrp 18626 Abelcabl 19694 mulGrpcmgp 20059 Rngcrng 20071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-rng 20072 |
| This theorem is referenced by: rngmgpf 20076 rngass 20078 rngcl 20083 isringrng 20206 isrnghmmul 20361 idrnghm 20377 c0rnghm 20451 cntzsubrng 20483 rnglidlmsgrp 21184 |
| Copyright terms: Public domain | W3C validator |