MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngmgp Structured version   Visualization version   GIF version

Theorem rngmgp 20103
Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
Hypothesis
Ref Expression
rngmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
rngmgp (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)

Proof of Theorem rngmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 rngmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2734 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2734 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20101 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp2bi 1146 1 (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  cfv 6528  (class class class)co 7400  Basecbs 17215  +gcplusg 17258  .rcmulr 17259  Smgrpcsgrp 18683  Abelcabl 19749  mulGrpcmgp 20087  Rngcrng 20099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5274
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-ov 7403  df-rng 20100
This theorem is referenced by:  rngmgpf  20104  rngass  20106  rngcl  20111  isringrng  20234  isrnghmmul  20389  idrnghm  20405  c0rnghm  20482  cntzsubrng  20514  rnglidlmsgrp  21194
  Copyright terms: Public domain W3C validator