| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmgp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| rngmgp | ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | rngmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | eqid 2736 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrng 20119 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Smgrpcsgrp 18701 Abelcabl 19767 mulGrpcmgp 20105 Rngcrng 20117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-rng 20118 |
| This theorem is referenced by: rngmgpf 20122 rngass 20124 rngcl 20129 isringrng 20252 isrnghmmul 20407 idrnghm 20423 c0rnghm 20500 cntzsubrng 20532 rnglidlmsgrp 21212 |
| Copyright terms: Public domain | W3C validator |