| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmgp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| rngmgp | ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | rngmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | eqid 2734 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2734 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrng 20101 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 +gcplusg 17258 .rcmulr 17259 Smgrpcsgrp 18683 Abelcabl 19749 mulGrpcmgp 20087 Rngcrng 20099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5274 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-ov 7403 df-rng 20100 |
| This theorem is referenced by: rngmgpf 20104 rngass 20106 rngcl 20111 isringrng 20234 isrnghmmul 20389 idrnghm 20405 c0rnghm 20482 cntzsubrng 20514 rnglidlmsgrp 21194 |
| Copyright terms: Public domain | W3C validator |