![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngmgp | Structured version Visualization version GIF version |
Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
rngmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
rngmgp | ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | rngmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2740 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isrng 20181 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Smgrpcsgrp 18756 Abelcabl 19823 mulGrpcmgp 20161 Rngcrng 20179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-rng 20180 |
This theorem is referenced by: rngmgpf 20184 rngass 20186 rngcl 20191 isringrng 20310 isrnghmmul 20468 idrnghm 20484 c0rnghm 20561 cntzsubrng 20593 rnglidlmsgrp 21279 |
Copyright terms: Public domain | W3C validator |