MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngmgp Structured version   Visualization version   GIF version

Theorem rngmgp 20075
Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
Hypothesis
Ref Expression
rngmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
rngmgp (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)

Proof of Theorem rngmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 rngmgp.g . . 3 𝐺 = (mulGrp‘𝑅)
3 eqid 2731 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2731 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20073 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp2bi 1146 1 (𝑅 ∈ Rng → 𝐺 ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Smgrpcsgrp 18626  Abelcabl 19694  mulGrpcmgp 20059  Rngcrng 20071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-rng 20072
This theorem is referenced by:  rngmgpf  20076  rngass  20078  rngcl  20083  isringrng  20206  isrnghmmul  20361  idrnghm  20377  c0rnghm  20451  cntzsubrng  20483  rnglidlmsgrp  21184
  Copyright terms: Public domain W3C validator