|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rngmgp | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| rngmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) | 
| Ref | Expression | 
|---|---|
| rngmgp | ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | rngmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | eqid 2736 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrng 20152 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) | 
| 6 | 5 | simp2bi 1146 | 1 ⊢ (𝑅 ∈ Rng → 𝐺 ∈ Smgrp) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 Smgrpcsgrp 18732 Abelcabl 19800 mulGrpcmgp 20138 Rngcrng 20150 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-rng 20151 | 
| This theorem is referenced by: rngmgpf 20155 rngass 20157 rngcl 20162 isringrng 20285 isrnghmmul 20443 idrnghm 20459 c0rnghm 20536 cntzsubrng 20568 rnglidlmsgrp 21257 | 
| Copyright terms: Public domain | W3C validator |