Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idrnghm Structured version   Visualization version   GIF version

Theorem idrnghm 45000
Description: The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020.)
Hypothesis
Ref Expression
idrnghm.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
idrnghm (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 RngHomo 𝑅))

Proof of Theorem idrnghm
StepHypRef Expression
1 id 22 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Rng)
21, 1jca 515 . 2 (𝑅 ∈ Rng → (𝑅 ∈ Rng ∧ 𝑅 ∈ Rng))
3 rngabl 44969 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
4 ablgrp 19029 . . . 4 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
5 idrnghm.b . . . . 5 𝐵 = (Base‘𝑅)
65idghm 18491 . . . 4 (𝑅 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑅 GrpHom 𝑅))
73, 4, 63syl 18 . . 3 (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 GrpHom 𝑅))
8 eqid 2738 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
98rngmgp 44970 . . . 4 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
10 sgrpmgm 18022 . . . 4 ((mulGrp‘𝑅) ∈ Smgrp → (mulGrp‘𝑅) ∈ Mgm)
118, 5mgpbas 19364 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
1211idmgmhm 44876 . . . 4 ((mulGrp‘𝑅) ∈ Mgm → ( I ↾ 𝐵) ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑅)))
139, 10, 123syl 18 . . 3 (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑅)))
147, 13jca 515 . 2 (𝑅 ∈ Rng → (( I ↾ 𝐵) ∈ (𝑅 GrpHom 𝑅) ∧ ( I ↾ 𝐵) ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑅))))
158, 8isrnghmmul 44985 . 2 (( I ↾ 𝐵) ∈ (𝑅 RngHomo 𝑅) ↔ ((𝑅 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (( I ↾ 𝐵) ∈ (𝑅 GrpHom 𝑅) ∧ ( I ↾ 𝐵) ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑅)))))
162, 14, 15sylanbrc 586 1 (𝑅 ∈ Rng → ( I ↾ 𝐵) ∈ (𝑅 RngHomo 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114   I cid 5428  cres 5527  cfv 6339  (class class class)co 7170  Basecbs 16586  Mgmcmgm 17966  Smgrpcsgrp 18016  Grpcgrp 18219   GrpHom cghm 18473  Abelcabl 19025  mulGrpcmgp 19358   MgmHom cmgmhm 44865  Rngcrng 44966   RngHomo crngh 44977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-plusg 16681  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-ghm 18474  df-abl 19027  df-mgp 19359  df-mgmhm 44867  df-rng0 44967  df-rnghomo 44979
This theorem is referenced by:  rnghmsubcsetclem1  45067  rngccatidALTV  45081
  Copyright terms: Public domain W3C validator