| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrnghmmul | Structured version Visualization version GIF version | ||
| Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| isrnghmmul.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| isrnghmmul.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
| Ref | Expression |
|---|---|
| isrnghmmul | ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 4 | 1, 2, 3 | isrnghm 20362 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
| 5 | isrnghmmul.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 6 | 5 | rngmgp 20077 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Smgrp) |
| 7 | sgrpmgm 18634 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Mgm) |
| 9 | isrnghmmul.n | . . . . . . . . . . 11 ⊢ 𝑁 = (mulGrp‘𝑆) | |
| 10 | 9 | rngmgp 20077 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Smgrp) |
| 11 | sgrpmgm 18634 | . . . . . . . . . 10 ⊢ (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Mgm) |
| 13 | 8, 12 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm)) |
| 14 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 15 | 1, 14 | ghmf 19135 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 16 | 13, 15 | anim12i 613 | . . . . . . 7 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆))) |
| 17 | 16 | biantrurd 532 | . . . . . 6 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
| 18 | anass 468 | . . . . . 6 ⊢ ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) | |
| 19 | 17, 18 | bitrdi 287 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))))) |
| 20 | 5, 1 | mgpbas 20066 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑀) |
| 21 | 9, 14 | mgpbas 20066 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑁) |
| 22 | 5, 2 | mgpplusg 20065 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘𝑀) |
| 23 | 9, 3 | mgpplusg 20065 | . . . . . 6 ⊢ (.r‘𝑆) = (+g‘𝑁) |
| 24 | 20, 21, 22, 23 | ismgmhm 18606 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
| 25 | 19, 24 | bitr4di 289 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁))) |
| 26 | 25 | pm5.32da 579 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| 27 | 26 | pm5.32i 574 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| 28 | 4, 27 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 .rcmulr 17198 Mgmcmgm 18548 MgmHom cmgmhm 18600 Smgrpcsgrp 18628 GrpHom cghm 19127 mulGrpcmgp 20061 Rngcrng 20073 RngHom crnghm 20355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mgmhm 18602 df-sgrp 18629 df-ghm 19128 df-abl 19698 df-mgp 20062 df-rng 20074 df-rnghm 20357 |
| This theorem is referenced by: rnghmmgmhm 20364 rnghmval2 20365 rnghmf1o 20373 rnghmco 20378 idrnghm 20379 rhmisrnghm 20401 c0rnghm 20456 |
| Copyright terms: Public domain | W3C validator |