MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrnghmmul Structured version   Visualization version   GIF version

Theorem isrnghmmul 20353
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
isrnghmmul.m 𝑀 = (mulGrp‘𝑅)
isrnghmmul.n 𝑁 = (mulGrp‘𝑆)
Assertion
Ref Expression
isrnghmmul (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))

Proof of Theorem isrnghmmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2730 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2730 . . 3 (.r𝑆) = (.r𝑆)
41, 2, 3isrnghm 20352 . 2 (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
5 isrnghmmul.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
65rngmgp 20067 . . . . . . . . . 10 (𝑅 ∈ Rng → 𝑀 ∈ Smgrp)
7 sgrpmgm 18624 . . . . . . . . . 10 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
86, 7syl 17 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑀 ∈ Mgm)
9 isrnghmmul.n . . . . . . . . . . 11 𝑁 = (mulGrp‘𝑆)
109rngmgp 20067 . . . . . . . . . 10 (𝑆 ∈ Rng → 𝑁 ∈ Smgrp)
11 sgrpmgm 18624 . . . . . . . . . 10 (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm)
1210, 11syl 17 . . . . . . . . 9 (𝑆 ∈ Rng → 𝑁 ∈ Mgm)
138, 12anim12i 613 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm))
14 eqid 2730 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
151, 14ghmf 19125 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
1613, 15anim12i 613 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)))
1716biantrurd 532 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
18 anass 468 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
1917, 18bitrdi 287 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦))))))
205, 1mgpbas 20056 . . . . . 6 (Base‘𝑅) = (Base‘𝑀)
219, 14mgpbas 20056 . . . . . 6 (Base‘𝑆) = (Base‘𝑁)
225, 2mgpplusg 20055 . . . . . 6 (.r𝑅) = (+g𝑀)
239, 3mgpplusg 20055 . . . . . 6 (.r𝑆) = (+g𝑁)
2420, 21, 22, 23ismgmhm 18596 . . . . 5 (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
2519, 24bitr4di 289 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁)))
2625pm5.32da 579 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))
2726pm5.32i 574 . 2 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))
284, 27bitri 275 1 (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wf 6473  cfv 6477  (class class class)co 7341  Basecbs 17112  .rcmulr 17154  Mgmcmgm 18538   MgmHom cmgmhm 18590  Smgrpcsgrp 18618   GrpHom cghm 19117  mulGrpcmgp 20051  Rngcrng 20063   RngHom crnghm 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mgmhm 18592  df-sgrp 18619  df-ghm 19118  df-abl 19688  df-mgp 20052  df-rng 20064  df-rnghm 20347
This theorem is referenced by:  rnghmmgmhm  20354  rnghmval2  20355  rnghmf1o  20363  rnghmco  20368  idrnghm  20369  rhmisrnghm  20391  c0rnghm  20443
  Copyright terms: Public domain W3C validator