![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrnghmmul | Structured version Visualization version GIF version |
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmmul.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
isrnghmmul.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
Ref | Expression |
---|---|
isrnghmmul | ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2736 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
4 | 1, 2, 3 | isrnghm 46180 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
5 | isrnghmmul.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
6 | 5 | rngmgp 46166 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Smgrp) |
7 | sgrpmgm 18551 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Mgm) |
9 | isrnghmmul.n | . . . . . . . . . . 11 ⊢ 𝑁 = (mulGrp‘𝑆) | |
10 | 9 | rngmgp 46166 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Smgrp) |
11 | sgrpmgm 18551 | . . . . . . . . . 10 ⊢ (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Mgm) |
13 | 8, 12 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm)) |
14 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
15 | 1, 14 | ghmf 19012 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
16 | 13, 15 | anim12i 613 | . . . . . . 7 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆))) |
17 | 16 | biantrurd 533 | . . . . . 6 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
18 | anass 469 | . . . . . 6 ⊢ ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) | |
19 | 17, 18 | bitrdi 286 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))))) |
20 | 5, 1 | mgpbas 19902 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑀) |
21 | 9, 14 | mgpbas 19902 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑁) |
22 | 5, 2 | mgpplusg 19900 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘𝑀) |
23 | 9, 3 | mgpplusg 19900 | . . . . . 6 ⊢ (.r‘𝑆) = (+g‘𝑁) |
24 | 20, 21, 22, 23 | ismgmhm 46067 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
25 | 19, 24 | bitr4di 288 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁))) |
26 | 25 | pm5.32da 579 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
27 | 26 | pm5.32i 575 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
28 | 4, 27 | bitri 274 | 1 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 .rcmulr 17134 Mgmcmgm 18495 Smgrpcsgrp 18545 GrpHom cghm 19005 mulGrpcmgp 19896 MgmHom cmgmhm 46061 Rngcrng 46162 RngHomo crngh 46173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-sgrp 18546 df-ghm 19006 df-abl 19565 df-mgp 19897 df-mgmhm 46063 df-rng 46163 df-rnghomo 46175 |
This theorem is referenced by: rnghmmgmhm 46182 rnghmval2 46183 rnghmf1o 46191 rnghmco 46195 idrnghm 46196 c0rnghm 46201 rhmisrnghm 46208 |
Copyright terms: Public domain | W3C validator |