![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrnghmmul | Structured version Visualization version GIF version |
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmmul.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
isrnghmmul.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
Ref | Expression |
---|---|
isrnghmmul | ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2726 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2726 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
4 | 1, 2, 3 | isrnghm 20343 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
5 | isrnghmmul.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
6 | 5 | rngmgp 20061 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Smgrp) |
7 | sgrpmgm 18657 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Mgm) |
9 | isrnghmmul.n | . . . . . . . . . . 11 ⊢ 𝑁 = (mulGrp‘𝑆) | |
10 | 9 | rngmgp 20061 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Smgrp) |
11 | sgrpmgm 18657 | . . . . . . . . . 10 ⊢ (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Mgm) |
13 | 8, 12 | anim12i 612 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm)) |
14 | eqid 2726 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
15 | 1, 14 | ghmf 19145 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
16 | 13, 15 | anim12i 612 | . . . . . . 7 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆))) |
17 | 16 | biantrurd 532 | . . . . . 6 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
18 | anass 468 | . . . . . 6 ⊢ ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) | |
19 | 17, 18 | bitrdi 287 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))))) |
20 | 5, 1 | mgpbas 20045 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑀) |
21 | 9, 14 | mgpbas 20045 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑁) |
22 | 5, 2 | mgpplusg 20043 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘𝑀) |
23 | 9, 3 | mgpplusg 20043 | . . . . . 6 ⊢ (.r‘𝑆) = (+g‘𝑁) |
24 | 20, 21, 22, 23 | ismgmhm 18629 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
25 | 19, 24 | bitr4di 289 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁))) |
26 | 25 | pm5.32da 578 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
27 | 26 | pm5.32i 574 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
28 | 4, 27 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 Mgmcmgm 18571 MgmHom cmgmhm 18623 Smgrpcsgrp 18651 GrpHom cghm 19138 mulGrpcmgp 20039 Rngcrng 20057 RngHom crnghm 20336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-mgmhm 18625 df-sgrp 18652 df-ghm 19139 df-abl 19703 df-mgp 20040 df-rng 20058 df-rnghm 20338 |
This theorem is referenced by: rnghmmgmhm 20345 rnghmval2 20346 rnghmf1o 20354 rnghmco 20359 idrnghm 20360 rhmisrnghm 20382 c0rnghm 20435 |
Copyright terms: Public domain | W3C validator |