![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrnghmmul | Structured version Visualization version GIF version |
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmmul.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
isrnghmmul.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
Ref | Expression |
---|---|
isrnghmmul | ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2735 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2735 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
4 | 1, 2, 3 | isrnghm 20458 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
5 | isrnghmmul.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
6 | 5 | rngmgp 20174 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Smgrp) |
7 | sgrpmgm 18750 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Mgm) |
9 | isrnghmmul.n | . . . . . . . . . . 11 ⊢ 𝑁 = (mulGrp‘𝑆) | |
10 | 9 | rngmgp 20174 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Smgrp) |
11 | sgrpmgm 18750 | . . . . . . . . . 10 ⊢ (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Mgm) |
13 | 8, 12 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm)) |
14 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
15 | 1, 14 | ghmf 19251 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
16 | 13, 15 | anim12i 613 | . . . . . . 7 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆))) |
17 | 16 | biantrurd 532 | . . . . . 6 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
18 | anass 468 | . . . . . 6 ⊢ ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) | |
19 | 17, 18 | bitrdi 287 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))))) |
20 | 5, 1 | mgpbas 20158 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑀) |
21 | 9, 14 | mgpbas 20158 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑁) |
22 | 5, 2 | mgpplusg 20156 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘𝑀) |
23 | 9, 3 | mgpplusg 20156 | . . . . . 6 ⊢ (.r‘𝑆) = (+g‘𝑁) |
24 | 20, 21, 22, 23 | ismgmhm 18722 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
25 | 19, 24 | bitr4di 289 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁))) |
26 | 25 | pm5.32da 579 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
27 | 26 | pm5.32i 574 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
28 | 4, 27 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 Mgmcmgm 18664 MgmHom cmgmhm 18716 Smgrpcsgrp 18744 GrpHom cghm 19243 mulGrpcmgp 20152 Rngcrng 20170 RngHom crnghm 20451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mgmhm 18718 df-sgrp 18745 df-ghm 19244 df-abl 19816 df-mgp 20153 df-rng 20171 df-rnghm 20453 |
This theorem is referenced by: rnghmmgmhm 20460 rnghmval2 20461 rnghmf1o 20469 rnghmco 20474 idrnghm 20475 rhmisrnghm 20497 c0rnghm 20552 |
Copyright terms: Public domain | W3C validator |