MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrnghmmul Structured version   Visualization version   GIF version

Theorem isrnghmmul 20393
Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
isrnghmmul.m 𝑀 = (mulGrp‘𝑅)
isrnghmmul.n 𝑁 = (mulGrp‘𝑆)
Assertion
Ref Expression
isrnghmmul (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))

Proof of Theorem isrnghmmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2725 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2725 . . 3 (.r𝑆) = (.r𝑆)
41, 2, 3isrnghm 20392 . 2 (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
5 isrnghmmul.m . . . . . . . . . . 11 𝑀 = (mulGrp‘𝑅)
65rngmgp 20108 . . . . . . . . . 10 (𝑅 ∈ Rng → 𝑀 ∈ Smgrp)
7 sgrpmgm 18687 . . . . . . . . . 10 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
86, 7syl 17 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑀 ∈ Mgm)
9 isrnghmmul.n . . . . . . . . . . 11 𝑁 = (mulGrp‘𝑆)
109rngmgp 20108 . . . . . . . . . 10 (𝑆 ∈ Rng → 𝑁 ∈ Smgrp)
11 sgrpmgm 18687 . . . . . . . . . 10 (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm)
1210, 11syl 17 . . . . . . . . 9 (𝑆 ∈ Rng → 𝑁 ∈ Mgm)
138, 12anim12i 611 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm))
14 eqid 2725 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
151, 14ghmf 19183 . . . . . . . 8 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
1613, 15anim12i 611 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)))
1716biantrurd 531 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
18 anass 467 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
1917, 18bitrdi 286 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦))))))
205, 1mgpbas 20092 . . . . . 6 (Base‘𝑅) = (Base‘𝑀)
219, 14mgpbas 20092 . . . . . 6 (Base‘𝑆) = (Base‘𝑁)
225, 2mgpplusg 20090 . . . . . 6 (.r𝑅) = (+g𝑀)
239, 3mgpplusg 20090 . . . . . 6 (.r𝑆) = (+g𝑁)
2420, 21, 22, 23ismgmhm 18659 . . . . 5 (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))))
2519, 24bitr4di 288 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁)))
2625pm5.32da 577 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))
2726pm5.32i 573 . 2 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r𝑅)𝑦)) = ((𝐹𝑥)(.r𝑆)(𝐹𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))
284, 27bitri 274 1 (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17183  .rcmulr 17237  Mgmcmgm 18601   MgmHom cmgmhm 18653  Smgrpcsgrp 18681   GrpHom cghm 19175  mulGrpcmgp 20086  Rngcrng 20104   RngHom crnghm 20385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mgmhm 18655  df-sgrp 18682  df-ghm 19176  df-abl 19750  df-mgp 20087  df-rng 20105  df-rnghm 20387
This theorem is referenced by:  rnghmmgmhm  20394  rnghmval2  20395  rnghmf1o  20403  rnghmco  20408  idrnghm  20409  rhmisrnghm  20431  c0rnghm  20484
  Copyright terms: Public domain W3C validator