| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrnghmmul | Structured version Visualization version GIF version | ||
| Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| isrnghmmul.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| isrnghmmul.n | ⊢ 𝑁 = (mulGrp‘𝑆) |
| Ref | Expression |
|---|---|
| isrnghmmul | ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2730 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 4 | 1, 2, 3 | isrnghm 20352 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
| 5 | isrnghmmul.m | . . . . . . . . . . 11 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 6 | 5 | rngmgp 20067 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Smgrp) |
| 7 | sgrpmgm 18624 | . . . . . . . . . 10 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑀 ∈ Mgm) |
| 9 | isrnghmmul.n | . . . . . . . . . . 11 ⊢ 𝑁 = (mulGrp‘𝑆) | |
| 10 | 9 | rngmgp 20067 | . . . . . . . . . 10 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Smgrp) |
| 11 | sgrpmgm 18624 | . . . . . . . . . 10 ⊢ (𝑁 ∈ Smgrp → 𝑁 ∈ Mgm) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑆 ∈ Rng → 𝑁 ∈ Mgm) |
| 13 | 8, 12 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm)) |
| 14 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 15 | 1, 14 | ghmf 19125 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
| 16 | 13, 15 | anim12i 613 | . . . . . . 7 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆))) |
| 17 | 16 | biantrurd 532 | . . . . . 6 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ (((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
| 18 | anass 468 | . . . . . 6 ⊢ ((((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) | |
| 19 | 17, 18 | bitrdi 287 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))))) |
| 20 | 5, 1 | mgpbas 20056 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑀) |
| 21 | 9, 14 | mgpbas 20056 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑁) |
| 22 | 5, 2 | mgpplusg 20055 | . . . . . 6 ⊢ (.r‘𝑅) = (+g‘𝑀) |
| 23 | 9, 3 | mgpplusg 20055 | . . . . . 6 ⊢ (.r‘𝑆) = (+g‘𝑁) |
| 24 | 20, 21, 22, 23 | ismgmhm 18596 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MgmHom 𝑁) ↔ ((𝑀 ∈ Mgm ∧ 𝑁 ∈ Mgm) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))))) |
| 25 | 19, 24 | bitr4di 289 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ 𝐹 ∈ (𝑅 GrpHom 𝑆)) → (∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)) ↔ 𝐹 ∈ (𝑀 MgmHom 𝑁))) |
| 26 | 25 | pm5.32da 579 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| 27 | 26 | pm5.32i 574 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(.r‘𝑅)𝑦)) = ((𝐹‘𝑥)(.r‘𝑆)(𝐹‘𝑦)))) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| 28 | 4, 27 | bitri 275 | 1 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MgmHom 𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 .rcmulr 17154 Mgmcmgm 18538 MgmHom cmgmhm 18590 Smgrpcsgrp 18618 GrpHom cghm 19117 mulGrpcmgp 20051 Rngcrng 20063 RngHom crnghm 20345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mgmhm 18592 df-sgrp 18619 df-ghm 19118 df-abl 19688 df-mgp 20052 df-rng 20064 df-rnghm 20347 |
| This theorem is referenced by: rnghmmgmhm 20354 rnghmval2 20355 rnghmf1o 20363 rnghmco 20368 idrnghm 20369 rhmisrnghm 20391 c0rnghm 20443 |
| Copyright terms: Public domain | W3C validator |