Step | Hyp | Ref
| Expression |
1 | | rnglidlabl.l |
. . 3
β’ πΏ = (LIdealβπ
) |
2 | | rnglidlabl.i |
. . 3
β’ πΌ = (π
βΎs π) |
3 | | rnglidlabl.z |
. . 3
β’ 0 =
(0gβπ
) |
4 | 1, 2, 3 | rnglidlmmgm 46756 |
. 2
β’ ((π
β Rng β§ π β πΏ β§ 0 β π) β (mulGrpβπΌ) β Mgm) |
5 | | eqid 2733 |
. . . . . . 7
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
6 | 5 | rngmgp 46652 |
. . . . . 6
β’ (π
β Rng β
(mulGrpβπ
) β
Smgrp) |
7 | 6 | 3ad2ant1 1134 |
. . . . 5
β’ ((π
β Rng β§ π β πΏ β§ 0 β π) β (mulGrpβπ
) β Smgrp) |
8 | 1, 2 | lidlssbas 46754 |
. . . . . . . . 9
β’ (π β πΏ β (BaseβπΌ) β (Baseβπ
)) |
9 | 8 | sseld 3982 |
. . . . . . . 8
β’ (π β πΏ β (π β (BaseβπΌ) β π β (Baseβπ
))) |
10 | 8 | sseld 3982 |
. . . . . . . 8
β’ (π β πΏ β (π β (BaseβπΌ) β π β (Baseβπ
))) |
11 | 8 | sseld 3982 |
. . . . . . . 8
β’ (π β πΏ β (π β (BaseβπΌ) β π β (Baseβπ
))) |
12 | 9, 10, 11 | 3anim123d 1444 |
. . . . . . 7
β’ (π β πΏ β ((π β (BaseβπΌ) β§ π β (BaseβπΌ) β§ π β (BaseβπΌ)) β (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π β (Baseβπ
)))) |
13 | 12 | 3ad2ant2 1135 |
. . . . . 6
β’ ((π
β Rng β§ π β πΏ β§ 0 β π) β ((π β (BaseβπΌ) β§ π β (BaseβπΌ) β§ π β (BaseβπΌ)) β (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π β (Baseβπ
)))) |
14 | 13 | imp 408 |
. . . . 5
β’ (((π
β Rng β§ π β πΏ β§ 0 β π) β§ (π β (BaseβπΌ) β§ π β (BaseβπΌ) β§ π β (BaseβπΌ))) β (π β (Baseβπ
) β§ π β (Baseβπ
) β§ π β (Baseβπ
))) |
15 | | eqid 2733 |
. . . . . . 7
β’
(Baseβπ
) =
(Baseβπ
) |
16 | 5, 15 | mgpbas 19993 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβ(mulGrpβπ
)) |
17 | | eqid 2733 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
18 | 5, 17 | mgpplusg 19991 |
. . . . . 6
β’
(.rβπ
) = (+gβ(mulGrpβπ
)) |
19 | 16, 18 | sgrpass 18616 |
. . . . 5
β’
(((mulGrpβπ
)
β Smgrp β§ (π
β (Baseβπ
) β§
π β (Baseβπ
) β§ π β (Baseβπ
))) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π))) |
20 | 7, 14, 19 | syl2an2r 684 |
. . . 4
β’ (((π
β Rng β§ π β πΏ β§ 0 β π) β§ (π β (BaseβπΌ) β§ π β (BaseβπΌ) β§ π β (BaseβπΌ))) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π))) |
21 | 2, 17 | ressmulr 17252 |
. . . . . . . . 9
β’ (π β πΏ β (.rβπ
) = (.rβπΌ)) |
22 | 21 | eqcomd 2739 |
. . . . . . . 8
β’ (π β πΏ β (.rβπΌ) = (.rβπ
)) |
23 | 22 | oveqd 7426 |
. . . . . . . 8
β’ (π β πΏ β (π(.rβπΌ)π) = (π(.rβπ
)π)) |
24 | | eqidd 2734 |
. . . . . . . 8
β’ (π β πΏ β π = π) |
25 | 22, 23, 24 | oveq123d 7430 |
. . . . . . 7
β’ (π β πΏ β ((π(.rβπΌ)π)(.rβπΌ)π) = ((π(.rβπ
)π)(.rβπ
)π)) |
26 | | eqidd 2734 |
. . . . . . . 8
β’ (π β πΏ β π = π) |
27 | 22 | oveqd 7426 |
. . . . . . . 8
β’ (π β πΏ β (π(.rβπΌ)π) = (π(.rβπ
)π)) |
28 | 22, 26, 27 | oveq123d 7430 |
. . . . . . 7
β’ (π β πΏ β (π(.rβπΌ)(π(.rβπΌ)π)) = (π(.rβπ
)(π(.rβπ
)π))) |
29 | 25, 28 | eqeq12d 2749 |
. . . . . 6
β’ (π β πΏ β (((π(.rβπΌ)π)(.rβπΌ)π) = (π(.rβπΌ)(π(.rβπΌ)π)) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π)))) |
30 | 29 | 3ad2ant2 1135 |
. . . . 5
β’ ((π
β Rng β§ π β πΏ β§ 0 β π) β (((π(.rβπΌ)π)(.rβπΌ)π) = (π(.rβπΌ)(π(.rβπΌ)π)) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π)))) |
31 | 30 | adantr 482 |
. . . 4
β’ (((π
β Rng β§ π β πΏ β§ 0 β π) β§ (π β (BaseβπΌ) β§ π β (BaseβπΌ) β§ π β (BaseβπΌ))) β (((π(.rβπΌ)π)(.rβπΌ)π) = (π(.rβπΌ)(π(.rβπΌ)π)) β ((π(.rβπ
)π)(.rβπ
)π) = (π(.rβπ
)(π(.rβπ
)π)))) |
32 | 20, 31 | mpbird 257 |
. . 3
β’ (((π
β Rng β§ π β πΏ β§ 0 β π) β§ (π β (BaseβπΌ) β§ π β (BaseβπΌ) β§ π β (BaseβπΌ))) β ((π(.rβπΌ)π)(.rβπΌ)π) = (π(.rβπΌ)(π(.rβπΌ)π))) |
33 | 32 | ralrimivvva 3204 |
. 2
β’ ((π
β Rng β§ π β πΏ β§ 0 β π) β βπ β (BaseβπΌ)βπ β (BaseβπΌ)βπ β (BaseβπΌ)((π(.rβπΌ)π)(.rβπΌ)π) = (π(.rβπΌ)(π(.rβπΌ)π))) |
34 | | eqid 2733 |
. . . 4
β’
(mulGrpβπΌ) =
(mulGrpβπΌ) |
35 | | eqid 2733 |
. . . 4
β’
(BaseβπΌ) =
(BaseβπΌ) |
36 | 34, 35 | mgpbas 19993 |
. . 3
β’
(BaseβπΌ) =
(Baseβ(mulGrpβπΌ)) |
37 | | eqid 2733 |
. . . 4
β’
(.rβπΌ) = (.rβπΌ) |
38 | 34, 37 | mgpplusg 19991 |
. . 3
β’
(.rβπΌ) = (+gβ(mulGrpβπΌ)) |
39 | 36, 38 | issgrp 18611 |
. 2
β’
((mulGrpβπΌ)
β Smgrp β ((mulGrpβπΌ) β Mgm β§ βπ β (BaseβπΌ)βπ β (BaseβπΌ)βπ β (BaseβπΌ)((π(.rβπΌ)π)(.rβπΌ)π) = (π(.rβπΌ)(π(.rβπΌ)π)))) |
40 | 4, 33, 39 | sylanbrc 584 |
1
β’ ((π
β Rng β§ π β πΏ β§ 0 β π) β (mulGrpβπΌ) β Smgrp) |