MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlmsgrp Structured version   Visualization version   GIF version

Theorem rnglidlmsgrp 21256
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
rnglidlabl.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidlmsgrp ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)

Proof of Theorem rnglidlmsgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 rnglidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
3 rnglidlabl.z . . 3 0 = (0g𝑅)
41, 2, 3rnglidlmmgm 21255 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
5 eqid 2737 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
65rngmgp 20153 . . . . . 6 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
763ad2ant1 1134 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝑅) ∈ Smgrp)
81, 2lidlssbas 21223 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
98sseld 3982 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
108sseld 3982 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
118sseld 3982 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
129, 10, 113anim123d 1445 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
13123ad2ant2 1135 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1413imp 406 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
15 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
165, 15mgpbas 20142 . . . . . 6 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
17 eqid 2737 . . . . . . 7 (.r𝑅) = (.r𝑅)
185, 17mgpplusg 20141 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
1916, 18sgrpass 18738 . . . . 5 (((mulGrp‘𝑅) ∈ Smgrp ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
207, 14, 19syl2an2r 685 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
212, 17ressmulr 17351 . . . . . . . . 9 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2221eqcomd 2743 . . . . . . . 8 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
2322oveqd 7448 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
24 eqidd 2738 . . . . . . . 8 (𝑈𝐿𝑐 = 𝑐)
2522, 23, 24oveq123d 7452 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐))
26 eqidd 2738 . . . . . . . 8 (𝑈𝐿𝑎 = 𝑎)
2722oveqd 7448 . . . . . . . 8 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
2822, 26, 27oveq123d 7452 . . . . . . 7 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
2925, 28eqeq12d 2753 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
30293ad2ant2 1135 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3130adantr 480 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
3220, 31mpbird 257 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
3332ralrimivvva 3205 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
34 eqid 2737 . . . 4 (mulGrp‘𝐼) = (mulGrp‘𝐼)
35 eqid 2737 . . . 4 (Base‘𝐼) = (Base‘𝐼)
3634, 35mgpbas 20142 . . 3 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
37 eqid 2737 . . . 4 (.r𝐼) = (.r𝐼)
3834, 37mgpplusg 20141 . . 3 (.r𝐼) = (+g‘(mulGrp‘𝐼))
3936, 38issgrp 18733 . 2 ((mulGrp‘𝐼) ∈ Smgrp ↔ ((mulGrp‘𝐼) ∈ Mgm ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐))))
404, 33, 39sylanbrc 583 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  .rcmulr 17298  0gc0g 17484  Mgmcmgm 18651  Smgrpcsgrp 18731  mulGrpcmgp 20137  Rngcrng 20149  LIdealclidl 21216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-abl 19801  df-mgp 20138  df-rng 20150  df-lss 20930  df-sra 21172  df-rgmod 21173  df-lidl 21218
This theorem is referenced by:  rnglidlrng  21257
  Copyright terms: Public domain W3C validator