Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isringrng Structured version   Visualization version   GIF version

Theorem isringrng 44159
Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
isringrng.b 𝐵 = (Base‘𝑅)
isringrng.t · = (.r𝑅)
Assertion
Ref Expression
isringrng (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦

Proof of Theorem isringrng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ringrng 44157 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
2 isringrng.b . . . . 5 𝐵 = (Base‘𝑅)
3 isringrng.t . . . . 5 · = (.r𝑅)
42, 3ringideu 19317 . . . 4 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
5 reurex 3433 . . . 4 (∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
64, 5syl 17 . . 3 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
71, 6jca 514 . 2 (𝑅 ∈ Ring → (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
8 rngabl 44155 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
9 ablgrp 18913 . . . . 5 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
1110adantr 483 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Grp)
12 eqid 2823 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1312rngmgp 44156 . . . . 5 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
1413anim1i 616 . . . 4 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1512, 2mgpbas 19247 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
1612, 3mgpplusg 19245 . . . . 5 · = (+g‘(mulGrp‘𝑅))
1715, 16ismnddef 17915 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1814, 17sylibr 236 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → (mulGrp‘𝑅) ∈ Mnd)
19 eqid 2823 . . . . . 6 (+g𝑅) = (+g𝑅)
202, 12, 19, 3isrng 44154 . . . . 5 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2120simp3bi 1143 . . . 4 (𝑅 ∈ Rng → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
2221adantr 483 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
232, 12, 19, 3isring 19303 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2411, 18, 22, 23syl3anbrc 1339 . 2 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Ring)
257, 24impbii 211 1 (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  ∃!wreu 3142  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Smgrpcsgrp 17902  Mndcmnd 17913  Grpcgrp 18105  Abelcabl 18909  mulGrpcmgp 19241  Ringcrg 19299  Rngcrng 44152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-rng0 44153
This theorem is referenced by:  zlidlring  44206  uzlidlring  44207
  Copyright terms: Public domain W3C validator