MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isringrng Structured version   Visualization version   GIF version

Theorem isringrng 20196
Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
isringrng.b 𝐵 = (Base‘𝑅)
isringrng.t · = (.r𝑅)
Assertion
Ref Expression
isringrng (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦

Proof of Theorem isringrng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ringrng 20194 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
2 isringrng.b . . . . 5 𝐵 = (Base‘𝑅)
3 isringrng.t . . . . 5 · = (.r𝑅)
42, 3ringideu 20163 . . . 4 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
5 reurex 3358 . . . 4 (∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
64, 5syl 17 . . 3 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
71, 6jca 511 . 2 (𝑅 ∈ Ring → (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
8 rngabl 20064 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
9 ablgrp 19715 . . . . 5 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
1110adantr 480 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Grp)
12 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1312rngmgp 20065 . . . . 5 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
1413anim1i 615 . . . 4 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1512, 2mgpbas 20054 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
1612, 3mgpplusg 20053 . . . . 5 · = (+g‘(mulGrp‘𝑅))
1715, 16ismnddef 18663 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1814, 17sylibr 234 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → (mulGrp‘𝑅) ∈ Mnd)
19 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
202, 12, 19, 3isrng 20063 . . . . 5 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2120simp3bi 1147 . . . 4 (𝑅 ∈ Rng → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
2221adantr 480 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
232, 12, 19, 3isring 20146 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2411, 18, 22, 23syl3anbrc 1344 . 2 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Ring)
257, 24impbii 209 1 (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3352  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Smgrpcsgrp 18645  Mndcmnd 18661  Grpcgrp 18865  Abelcabl 19711  mulGrpcmgp 20049  Rngcrng 20061  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144
This theorem is referenced by:  opprring  20256  rngisomring  20376  pzriprnglem7  21397  pzriprnglem13  21403  zlidlring  48222  uzlidlring  48223
  Copyright terms: Public domain W3C validator