![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isringrng | Structured version Visualization version GIF version |
Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
isringrng.b | ⊢ 𝐵 = (Base‘𝑅) |
isringrng.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isringrng | ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringrng 46167 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
2 | isringrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | isringrng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
4 | 2, 3 | ringideu 19985 | . . . 4 ⊢ (𝑅 ∈ Ring → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) |
5 | reurex 3357 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) |
7 | 1, 6 | jca 512 | . 2 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
8 | rngabl 46165 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
9 | ablgrp 19567 | . . . . 5 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Grp) |
12 | eqid 2736 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
13 | 12 | rngmgp 46166 | . . . . 5 ⊢ (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp) |
14 | 13 | anim1i 615 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
15 | 12, 2 | mgpbas 19902 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
16 | 12, 3 | mgpplusg 19900 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
17 | 15, 16 | ismnddef 18558 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ Mnd ↔ ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
18 | 14, 17 | sylibr 233 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → (mulGrp‘𝑅) ∈ Mnd) |
19 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
20 | 2, 12, 19, 3 | isrng 46164 | . . . . 5 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))))) |
21 | 20 | simp3bi 1147 | . . . 4 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) |
22 | 21 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) |
23 | 2, 12, 19, 3 | isring 19968 | . . 3 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))))) |
24 | 11, 18, 22, 23 | syl3anbrc 1343 | . 2 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Ring) |
25 | 7, 24 | impbii 208 | 1 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 ∃!wreu 3351 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Smgrpcsgrp 18545 Mndcmnd 18556 Grpcgrp 18748 Abelcabl 19563 mulGrpcmgp 19896 Ringcrg 19964 Rngcrng 46162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-rng 46163 |
This theorem is referenced by: zlidlring 46216 uzlidlring 46217 |
Copyright terms: Public domain | W3C validator |