| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isringrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| isringrng.b | ⊢ 𝐵 = (Base‘𝑅) |
| isringrng.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isringrng | ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng 20194 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
| 2 | isringrng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | isringrng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 4 | 2, 3 | ringideu 20163 | . . . 4 ⊢ (𝑅 ∈ Ring → ∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) |
| 5 | reurex 3358 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) |
| 7 | 1, 6 | jca 511 | . 2 ⊢ (𝑅 ∈ Ring → (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
| 8 | rngabl 20064 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 9 | ablgrp 19715 | . . . . 5 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Grp) |
| 12 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 13 | 12 | rngmgp 20065 | . . . . 5 ⊢ (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp) |
| 14 | 13 | anim1i 615 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
| 15 | 12, 2 | mgpbas 20054 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 16 | 12, 3 | mgpplusg 20053 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 17 | 15, 16 | ismnddef 18663 | . . . 4 ⊢ ((mulGrp‘𝑅) ∈ Mnd ↔ ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
| 18 | 14, 17 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → (mulGrp‘𝑅) ∈ Mnd) |
| 19 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 20 | 2, 12, 19, 3 | isrng 20063 | . . . . 5 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))))) |
| 21 | 20 | simp3bi 1147 | . . . 4 ⊢ (𝑅 ∈ Rng → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) |
| 22 | 21 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) |
| 23 | 2, 12, 19, 3 | isring 20146 | . . 3 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))))) |
| 24 | 11, 18, 22, 23 | syl3anbrc 1344 | . 2 ⊢ ((𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Ring) |
| 25 | 7, 24 | impbii 209 | 1 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∃!wreu 3352 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Smgrpcsgrp 18645 Mndcmnd 18661 Grpcgrp 18865 Abelcabl 19711 mulGrpcmgp 20049 Rngcrng 20061 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: opprring 20256 rngisomring 20376 pzriprnglem7 21397 pzriprnglem13 21403 zlidlring 48222 uzlidlring 48223 |
| Copyright terms: Public domain | W3C validator |