MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isringrng Structured version   Visualization version   GIF version

Theorem isringrng 20247
Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
isringrng.b 𝐵 = (Base‘𝑅)
isringrng.t · = (.r𝑅)
Assertion
Ref Expression
isringrng (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦

Proof of Theorem isringrng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ringrng 20245 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
2 isringrng.b . . . . 5 𝐵 = (Base‘𝑅)
3 isringrng.t . . . . 5 · = (.r𝑅)
42, 3ringideu 20214 . . . 4 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
5 reurex 3363 . . . 4 (∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
64, 5syl 17 . . 3 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
71, 6jca 511 . 2 (𝑅 ∈ Ring → (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
8 rngabl 20115 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
9 ablgrp 19766 . . . . 5 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
1110adantr 480 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Grp)
12 eqid 2735 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1312rngmgp 20116 . . . . 5 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
1413anim1i 615 . . . 4 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1512, 2mgpbas 20105 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
1612, 3mgpplusg 20104 . . . . 5 · = (+g‘(mulGrp‘𝑅))
1715, 16ismnddef 18714 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ ((mulGrp‘𝑅) ∈ Smgrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1814, 17sylibr 234 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → (mulGrp‘𝑅) ∈ Mnd)
19 eqid 2735 . . . . . 6 (+g𝑅) = (+g𝑅)
202, 12, 19, 3isrng 20114 . . . . 5 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2120simp3bi 1147 . . . 4 (𝑅 ∈ Rng → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
2221adantr 480 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
232, 12, 19, 3isring 20197 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2411, 18, 22, 23syl3anbrc 1344 . 2 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Ring)
257, 24impbii 209 1 (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ∃!wreu 3357  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Smgrpcsgrp 18696  Mndcmnd 18712  Grpcgrp 18916  Abelcabl 19762  mulGrpcmgp 20100  Rngcrng 20112  Ringcrg 20193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195
This theorem is referenced by:  opprring  20307  rngisomring  20427  pzriprnglem7  21448  pzriprnglem13  21454  zlidlring  48209  uzlidlring  48210
  Copyright terms: Public domain W3C validator