Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isringrng Structured version   Visualization version   GIF version

Theorem isringrng 42680
Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
isringrng.b 𝐵 = (Base‘𝑅)
isringrng.t · = (.r𝑅)
Assertion
Ref Expression
isringrng (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥, · ,𝑦

Proof of Theorem isringrng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ringrng 42678 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
2 isringrng.b . . . . 5 𝐵 = (Base‘𝑅)
3 isringrng.t . . . . 5 · = (.r𝑅)
42, 3ringideu 18881 . . . 4 (𝑅 ∈ Ring → ∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
5 reurex 3343 . . . 4 (∃!𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦) → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
64, 5syl 17 . . 3 (𝑅 ∈ Ring → ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦))
71, 6jca 508 . 2 (𝑅 ∈ Ring → (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
8 rngabl 42676 . . . . 5 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
9 ablgrp 18513 . . . . 5 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
1110adantr 473 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Grp)
12 eqid 2799 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1312rngmgp 42677 . . . . 5 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ SGrp)
1413anim1i 609 . . . 4 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ((mulGrp‘𝑅) ∈ SGrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1512, 2mgpbas 18811 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
1612, 3mgpplusg 18809 . . . . 5 · = (+g‘(mulGrp‘𝑅))
1715, 16ismnddef 17611 . . . 4 ((mulGrp‘𝑅) ∈ Mnd ↔ ((mulGrp‘𝑅) ∈ SGrp ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
1814, 17sylibr 226 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → (mulGrp‘𝑅) ∈ Mnd)
19 eqid 2799 . . . . . 6 (+g𝑅) = (+g𝑅)
202, 12, 19, 3isrng 42675 . . . . 5 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2120simp3bi 1178 . . . 4 (𝑅 ∈ Rng → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
2221adantr 473 . . 3 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
232, 12, 19, 3isring 18867 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
2411, 18, 22, 23syl3anbrc 1444 . 2 ((𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)) → 𝑅 ∈ Ring)
257, 24impbii 201 1 (𝑅 ∈ Ring ↔ (𝑅 ∈ Rng ∧ ∃𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑦 ∧ (𝑦 · 𝑥) = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  wrex 3090  ∃!wreu 3091  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  .rcmulr 16268  SGrpcsgrp 17598  Mndcmnd 17609  Grpcgrp 17738  Abelcabl 18509  mulGrpcmgp 18805  Ringcrg 18863  Rngcrng 42673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-rng0 42674
This theorem is referenced by:  zlidlring  42727  uzlidlring  42728
  Copyright terms: Public domain W3C validator