MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcl Structured version   Visualization version   GIF version

Theorem rngcl 20143
Description: Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
Assertion
Ref Expression
rngcl ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem rngcl
StepHypRef Expression
1 eqid 2726 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21rngmgp 20135 . . 3 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
3 sgrpmgm 18712 . . 3 ((mulGrp‘𝑅) ∈ Smgrp → (mulGrp‘𝑅) ∈ Mgm)
42, 3syl 17 . 2 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Mgm)
5 rngcl.b . . . 4 𝐵 = (Base‘𝑅)
61, 5mgpbas 20119 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
7 rngcl.t . . . 4 · = (.r𝑅)
81, 7mgpplusg 20117 . . 3 · = (+g‘(mulGrp‘𝑅))
96, 8mgmcl 18631 . 2 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
104, 9syl3an1 1160 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  cfv 6546  (class class class)co 7416  Basecbs 17208  .rcmulr 17262  Mgmcmgm 18626  Smgrpcsgrp 18706  mulGrpcmgp 20113  Rngcrng 20131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-plusg 17274  df-mgm 18628  df-sgrp 18707  df-mgp 20114  df-rng 20132
This theorem is referenced by:  rnglz  20144  rngrz  20145  rngmneg1  20146  rngmneg2  20147  rngm2neg  20148  rngsubdi  20150  rngsubdir  20151  prdsmulrngcl  20154  imasrng  20156  qusrng  20159  opprrng  20323  rngisom1  20444  subrngmcl  20535  rnglidlmcl  21201  rnglidl1  21217  2idlcpblrng  21256  qusmulrng  21267  rngqiprngimfolem  21275  rngqiprnglinlem1  21276  rngqiprnglinlem3  21278  rngqiprngimfo  21286  rngqiprnglin  21287  rngqiprngfulem3  21298  rngqiprngfulem4  21299  rngqiprngfulem5  21300
  Copyright terms: Public domain W3C validator