MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubrng Structured version   Visualization version   GIF version

Theorem cntzsubrng 20516
Description: Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
cntzsubrng.b 𝐵 = (Base‘𝑅)
cntzsubrng.m 𝑀 = (mulGrp‘𝑅)
cntzsubrng.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubrng ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRng‘𝑅))

Proof of Theorem cntzsubrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubrng.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
2 cntzsubrng.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2mgpbas 20092 . . . . 5 𝐵 = (Base‘𝑀)
4 cntzsubrng.z . . . . 5 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 19291 . . . 4 (𝑍𝑆) ⊆ 𝐵
65a1i 11 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
7 simpll 765 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑅 ∈ Rng)
8 ssel2 3971 . . . . . . . . 9 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
98adantll 712 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑧𝐵)
10 eqid 2725 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2725 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
122, 10, 11rnglz 20117 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑧𝐵) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
137, 9, 12syl2anc 582 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
142, 10, 11rngrz 20118 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑧𝐵) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
157, 9, 14syl2anc 582 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
1613, 15eqtr4d 2768 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
1716ralrimiva 3135 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
18 simpr 483 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → 𝑆𝐵)
192, 11rng0cl 20115 . . . . . . 7 (𝑅 ∈ Rng → (0g𝑅) ∈ 𝐵)
2019adantr 479 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (0g𝑅) ∈ 𝐵)
211, 10mgpplusg 20090 . . . . . . 7 (.r𝑅) = (+g𝑀)
223, 21, 4cntzel 19286 . . . . . 6 ((𝑆𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2318, 20, 22syl2anc 582 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2417, 23mpbird 256 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (0g𝑅) ∈ (𝑍𝑆))
2524ne0d 4335 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ≠ ∅)
26 simpl2 1189 . . . . . . . . . . . 12 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
2721, 4cntzi 19292 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
2826, 27sylancom 586 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
29 simpl3 1190 . . . . . . . . . . . 12 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦 ∈ (𝑍𝑆))
3021, 4cntzi 19292 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3129, 30sylancom 586 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3228, 31oveq12d 7437 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
33 simpl1l 1221 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Rng)
345, 26sselid 3974 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
355, 29sselid 3974 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦𝐵)
36 simp1r 1195 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑆𝐵)
3736sselda 3976 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
38 eqid 2725 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
392, 38, 10rngdir 20113 . . . . . . . . . . 11 ((𝑅 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4033, 34, 35, 37, 39syl13anc 1369 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
412, 38, 10rngdi 20112 . . . . . . . . . . 11 ((𝑅 ∈ Rng ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4233, 37, 34, 35, 41syl13anc 1369 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4332, 40, 423eqtr4d 2775 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
4443ralrimiva 3135 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
45 simp1l 1194 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑅 ∈ Rng)
46 simp2 1134 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
475, 46sselid 3974 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥𝐵)
48 simp3 1135 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦 ∈ (𝑍𝑆))
495, 48sselid 3974 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦𝐵)
502, 38rngacl 20114 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
5145, 47, 49, 50syl3anc 1368 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
523, 21, 4cntzel 19286 . . . . . . . . 9 ((𝑆𝐵 ∧ (𝑥(+g𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5336, 51, 52syl2anc 582 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5444, 53mpbird 256 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
55543expa 1115 . . . . . 6 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5655ralrimiva 3135 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5727adantll 712 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
5857fveq2d 6900 . . . . . . . 8 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((invg𝑅)‘(𝑥(.r𝑅)𝑧)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
59 eqid 2725 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
60 simplll 773 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Rng)
61 simplr 767 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
625, 61sselid 3974 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
63 simplr 767 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
6463sselda 3976 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
652, 10, 59, 60, 62, 64rngmneg1 20119 . . . . . . . 8 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = ((invg𝑅)‘(𝑥(.r𝑅)𝑧)))
662, 10, 59, 60, 64, 62rngmneg2 20120 . . . . . . . 8 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)((invg𝑅)‘𝑥)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
6758, 65, 663eqtr4d 2775 . . . . . . 7 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
6867ralrimiva 3135 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
69 rnggrp 20110 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7069ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑅 ∈ Grp)
71 simpr 483 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
725, 71sselid 3974 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
732, 59, 70, 72grpinvcld 18953 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ 𝐵)
743, 21, 4cntzel 19286 . . . . . . 7 ((𝑆𝐵 ∧ ((invg𝑅)‘𝑥) ∈ 𝐵) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7563, 73, 74syl2anc 582 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7668, 75mpbird 256 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ (𝑍𝑆))
7756, 76jca 510 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
7877ralrimiva 3135 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
7969adantr 479 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → 𝑅 ∈ Grp)
802, 38, 59issubg2 19104 . . . 4 (𝑅 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
8179, 80syl 17 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
826, 25, 78, 81mpbir3and 1339 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑅))
83 eqid 2725 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8483rngmgp 20108 . . . 4 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
8583, 2mgpbas 20092 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
8685sseq2i 4006 . . . . 5 (𝑆𝐵𝑆 ⊆ (Base‘(mulGrp‘𝑅)))
8786biimpi 215 . . . 4 (𝑆𝐵𝑆 ⊆ (Base‘(mulGrp‘𝑅)))
88 eqid 2725 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
891fveq2i 6899 . . . . . 6 (Cntz‘𝑀) = (Cntz‘(mulGrp‘𝑅))
904, 89eqtri 2753 . . . . 5 𝑍 = (Cntz‘(mulGrp‘𝑅))
91 eqid 2725 . . . . 5 (𝑍𝑆) = (𝑍𝑆)
9288, 90, 91cntzsgrpcl 19297 . . . 4 (((mulGrp‘𝑅) ∈ Smgrp ∧ 𝑆 ⊆ (Base‘(mulGrp‘𝑅))) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
9384, 87, 92syl2an 594 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
9483, 10mgpplusg 20090 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
9594oveqi 7432 . . . . 5 (𝑥(.r𝑅)𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦)
9695eleq1i 2816 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆) ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
97962ralbii 3117 . . 3 (∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
9893, 97sylibr 233 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆))
992, 10issubrng2 20507 . . 3 (𝑅 ∈ Rng → ((𝑍𝑆) ∈ (SubRng‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆))))
10099adantr 479 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubRng‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆))))
10182, 98, 100mpbir2and 711 1 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wss 3944  c0 4322  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  0gc0g 17424  Smgrpcsgrp 18681  Grpcgrp 18898  invgcminusg 18899  SubGrpcsubg 19083  Cntzccntz 19278  mulGrpcmgp 20086  Rngcrng 20104  SubRngcsubrng 20494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-subg 19086  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-subrng 20495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator