MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubrng Structured version   Visualization version   GIF version

Theorem cntzsubrng 20593
Description: Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025.)
Hypotheses
Ref Expression
cntzsubrng.b 𝐵 = (Base‘𝑅)
cntzsubrng.m 𝑀 = (mulGrp‘𝑅)
cntzsubrng.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubrng ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRng‘𝑅))

Proof of Theorem cntzsubrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubrng.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
2 cntzsubrng.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2mgpbas 20167 . . . . 5 𝐵 = (Base‘𝑀)
4 cntzsubrng.z . . . . 5 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 19368 . . . 4 (𝑍𝑆) ⊆ 𝐵
65a1i 11 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
7 simpll 766 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑅 ∈ Rng)
8 ssel2 4003 . . . . . . . . 9 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
98adantll 713 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑧𝐵)
10 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2740 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
122, 10, 11rnglz 20192 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑧𝐵) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
137, 9, 12syl2anc 583 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
142, 10, 11rngrz 20193 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑧𝐵) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
157, 9, 14syl2anc 583 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
1613, 15eqtr4d 2783 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
1716ralrimiva 3152 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
18 simpr 484 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → 𝑆𝐵)
192, 11rng0cl 20190 . . . . . . 7 (𝑅 ∈ Rng → (0g𝑅) ∈ 𝐵)
2019adantr 480 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (0g𝑅) ∈ 𝐵)
211, 10mgpplusg 20165 . . . . . . 7 (.r𝑅) = (+g𝑀)
223, 21, 4cntzel 19363 . . . . . 6 ((𝑆𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2318, 20, 22syl2anc 583 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2417, 23mpbird 257 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (0g𝑅) ∈ (𝑍𝑆))
2524ne0d 4365 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ≠ ∅)
26 simpl2 1192 . . . . . . . . . . . 12 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
2721, 4cntzi 19369 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
2826, 27sylancom 587 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
29 simpl3 1193 . . . . . . . . . . . 12 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦 ∈ (𝑍𝑆))
3021, 4cntzi 19369 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3129, 30sylancom 587 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3228, 31oveq12d 7466 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
33 simpl1l 1224 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Rng)
345, 26sselid 4006 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
355, 29sselid 4006 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦𝐵)
36 simp1r 1198 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑆𝐵)
3736sselda 4008 . . . . . . . . . . 11 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
38 eqid 2740 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
392, 38, 10rngdir 20188 . . . . . . . . . . 11 ((𝑅 ∈ Rng ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4033, 34, 35, 37, 39syl13anc 1372 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
412, 38, 10rngdi 20187 . . . . . . . . . . 11 ((𝑅 ∈ Rng ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4233, 37, 34, 35, 41syl13anc 1372 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4332, 40, 423eqtr4d 2790 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
4443ralrimiva 3152 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
45 simp1l 1197 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑅 ∈ Rng)
46 simp2 1137 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
475, 46sselid 4006 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥𝐵)
48 simp3 1138 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦 ∈ (𝑍𝑆))
495, 48sselid 4006 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦𝐵)
502, 38rngacl 20189 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
5145, 47, 49, 50syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
523, 21, 4cntzel 19363 . . . . . . . . 9 ((𝑆𝐵 ∧ (𝑥(+g𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5336, 51, 52syl2anc 583 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5444, 53mpbird 257 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
55543expa 1118 . . . . . 6 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5655ralrimiva 3152 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5727adantll 713 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
5857fveq2d 6924 . . . . . . . 8 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((invg𝑅)‘(𝑥(.r𝑅)𝑧)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
59 eqid 2740 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
60 simplll 774 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Rng)
61 simplr 768 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
625, 61sselid 4006 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
63 simplr 768 . . . . . . . . . 10 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
6463sselda 4008 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
652, 10, 59, 60, 62, 64rngmneg1 20194 . . . . . . . 8 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = ((invg𝑅)‘(𝑥(.r𝑅)𝑧)))
662, 10, 59, 60, 64, 62rngmneg2 20195 . . . . . . . 8 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)((invg𝑅)‘𝑥)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
6758, 65, 663eqtr4d 2790 . . . . . . 7 ((((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
6867ralrimiva 3152 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
69 rnggrp 20185 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
7069ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑅 ∈ Grp)
71 simpr 484 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
725, 71sselid 4006 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
732, 59, 70, 72grpinvcld 19028 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ 𝐵)
743, 21, 4cntzel 19363 . . . . . . 7 ((𝑆𝐵 ∧ ((invg𝑅)‘𝑥) ∈ 𝐵) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7563, 73, 74syl2anc 583 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7668, 75mpbird 257 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ (𝑍𝑆))
7756, 76jca 511 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
7877ralrimiva 3152 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
7969adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → 𝑅 ∈ Grp)
802, 38, 59issubg2 19181 . . . 4 (𝑅 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
8179, 80syl 17 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
826, 25, 78, 81mpbir3and 1342 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑅))
83 eqid 2740 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
8483rngmgp 20183 . . . 4 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
8583, 2mgpbas 20167 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
8685sseq2i 4038 . . . . 5 (𝑆𝐵𝑆 ⊆ (Base‘(mulGrp‘𝑅)))
8786biimpi 216 . . . 4 (𝑆𝐵𝑆 ⊆ (Base‘(mulGrp‘𝑅)))
88 eqid 2740 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
891fveq2i 6923 . . . . . 6 (Cntz‘𝑀) = (Cntz‘(mulGrp‘𝑅))
904, 89eqtri 2768 . . . . 5 𝑍 = (Cntz‘(mulGrp‘𝑅))
91 eqid 2740 . . . . 5 (𝑍𝑆) = (𝑍𝑆)
9288, 90, 91cntzsgrpcl 19374 . . . 4 (((mulGrp‘𝑅) ∈ Smgrp ∧ 𝑆 ⊆ (Base‘(mulGrp‘𝑅))) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
9384, 87, 92syl2an 595 . . 3 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
9483, 10mgpplusg 20165 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
9594oveqi 7461 . . . . 5 (𝑥(.r𝑅)𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦)
9695eleq1i 2835 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆) ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
97962ralbii 3134 . . 3 (∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(+g‘(mulGrp‘𝑅))𝑦) ∈ (𝑍𝑆))
9893, 97sylibr 234 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆))
992, 10issubrng2 20584 . . 3 (𝑅 ∈ Rng → ((𝑍𝑆) ∈ (SubRng‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆))))
10099adantr 480 . 2 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubRng‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (𝑍𝑆)∀𝑦 ∈ (𝑍𝑆)(𝑥(.r𝑅)𝑦) ∈ (𝑍𝑆))))
10182, 98, 100mpbir2and 712 1 ((𝑅 ∈ Rng ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRng‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Smgrpcsgrp 18756  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160  Cntzccntz 19355  mulGrpcmgp 20161  Rngcrng 20179  SubRngcsubrng 20571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-subrng 20572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator