| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmgpf | Structured version Visualization version GIF version | ||
| Description: Restricted functionality of the multiplicative group on non-unital rings (mgpf 20213 analog). (Contributed by AV, 22-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngmgpf | ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 20107 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3988 | . . 3 ⊢ Rng ⊆ V | |
| 3 | fnssres 6666 | . . 3 ⊢ ((mulGrp Fn V ∧ Rng ⊆ V) → (mulGrp ↾ Rng) Fn Rng) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (mulGrp ↾ Rng) Fn Rng |
| 5 | fvres 6900 | . . . 4 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | rngmgp 20121 | . . . 4 ⊢ (𝑎 ∈ Rng → (mulGrp‘𝑎) ∈ Smgrp) |
| 8 | 5, 7 | eqeltrd 2835 | . . 3 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp) |
| 9 | 8 | rgen 3054 | . 2 ⊢ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp |
| 10 | ffnfv 7114 | . 2 ⊢ ((mulGrp ↾ Rng):Rng⟶Smgrp ↔ ((mulGrp ↾ Rng) Fn Rng ∧ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp)) | |
| 11 | 4, 9, 10 | mpbir2an 711 | 1 ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 ↾ cres 5661 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 Smgrpcsgrp 18701 mulGrpcmgp 20105 Rngcrng 20117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-mgp 20106 df-rng 20118 |
| This theorem is referenced by: prdsrngd 20141 |
| Copyright terms: Public domain | W3C validator |