| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngmgpf | Structured version Visualization version GIF version | ||
| Description: Restricted functionality of the multiplicative group on non-unital rings (mgpf 20164 analog). (Contributed by AV, 22-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngmgpf | ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmgp 20058 | . . 3 ⊢ mulGrp Fn V | |
| 2 | ssv 3974 | . . 3 ⊢ Rng ⊆ V | |
| 3 | fnssres 6644 | . . 3 ⊢ ((mulGrp Fn V ∧ Rng ⊆ V) → (mulGrp ↾ Rng) Fn Rng) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (mulGrp ↾ Rng) Fn Rng |
| 5 | fvres 6880 | . . . 4 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) = (mulGrp‘𝑎)) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘𝑎) = (mulGrp‘𝑎) | |
| 7 | 6 | rngmgp 20072 | . . . 4 ⊢ (𝑎 ∈ Rng → (mulGrp‘𝑎) ∈ Smgrp) |
| 8 | 5, 7 | eqeltrd 2829 | . . 3 ⊢ (𝑎 ∈ Rng → ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp) |
| 9 | 8 | rgen 3047 | . 2 ⊢ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp |
| 10 | ffnfv 7094 | . 2 ⊢ ((mulGrp ↾ Rng):Rng⟶Smgrp ↔ ((mulGrp ↾ Rng) Fn Rng ∧ ∀𝑎 ∈ Rng ((mulGrp ↾ Rng)‘𝑎) ∈ Smgrp)) | |
| 11 | 4, 9, 10 | mpbir2an 711 | 1 ⊢ (mulGrp ↾ Rng):Rng⟶Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 Smgrpcsgrp 18652 mulGrpcmgp 20056 Rngcrng 20068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-mgp 20057 df-rng 20069 |
| This theorem is referenced by: prdsrngd 20092 |
| Copyright terms: Public domain | W3C validator |