MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngabl Structured version   Visualization version   GIF version

Theorem rngabl 20094
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
Assertion
Ref Expression
rngabl (𝑅 ∈ Rng → 𝑅 ∈ Abel)

Proof of Theorem rngabl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2728 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2728 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2728 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20093 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1143 1 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  .rcmulr 17233  Smgrpcsgrp 18677  Abelcabl 19735  mulGrpcmgp 20073  Rngcrng 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-ov 7423  df-rng 20092
This theorem is referenced by:  rnggrp  20097  rnglz  20104  rngansg  20109  prdsrngd  20115  imasrng  20116  isringrng  20222  opprrng  20283  isrnghm  20379  isrnghmd  20389  idrnghm  20396  c0rnghm  20471  zrrnghm  20472  subrngringnsg  20489  issubrng2  20494  rnglidlrng  21141  2idlcpblrng  21164  qus2idrng  21166  rngqiprngimf1lem  21183  rngqiprngimfo  21190  rngqiprngfulem2  21201  rngqiprngfulem4  21203
  Copyright terms: Public domain W3C validator