![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngabl | Structured version Visualization version GIF version |
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
rngabl | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2740 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2740 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isrng 20181 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Smgrpcsgrp 18756 Abelcabl 19823 mulGrpcmgp 20161 Rngcrng 20179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-rng 20180 |
This theorem is referenced by: rnggrp 20185 rnglz 20192 rngansg 20197 prdsrngd 20203 imasrng 20204 isringrng 20310 opprrng 20371 isrnghm 20467 isrnghmd 20477 idrnghm 20484 c0rnghm 20561 zrrnghm 20562 subrngringnsg 20579 issubrng2 20584 rnglidlrng 21280 2idlcpblrng 21304 qus2idrng 21306 rngqiprngimf1lem 21327 rngqiprngimfo 21334 rngqiprngfulem2 21345 rngqiprngfulem4 21347 |
Copyright terms: Public domain | W3C validator |