MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngabl Structured version   Visualization version   GIF version

Theorem rngabl 20115
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
Assertion
Ref Expression
rngabl (𝑅 ∈ Rng → 𝑅 ∈ Abel)

Proof of Theorem rngabl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2735 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2735 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2735 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20114 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1145 1 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Smgrpcsgrp 18696  Abelcabl 19762  mulGrpcmgp 20100  Rngcrng 20112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-rng 20113
This theorem is referenced by:  rnggrp  20118  rnglz  20125  rngansg  20130  prdsrngd  20136  imasrng  20137  isringrng  20247  opprrng  20305  isrnghm  20401  isrnghmd  20411  idrnghm  20418  c0rnghm  20495  zrrnghm  20496  subrngringnsg  20513  issubrng2  20518  rnglidlrng  21208  2idlcpblrng  21232  qus2idrng  21234  rngqiprngimf1lem  21255  rngqiprngimfo  21262  rngqiprngfulem2  21273  rngqiprngfulem4  21275
  Copyright terms: Public domain W3C validator