| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngabl | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngabl | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2730 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrng 20070 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Smgrpcsgrp 18652 Abelcabl 19718 mulGrpcmgp 20056 Rngcrng 20068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-rng 20069 |
| This theorem is referenced by: rnggrp 20074 rnglz 20081 rngansg 20086 prdsrngd 20092 imasrng 20093 isringrng 20203 opprrng 20261 isrnghm 20357 isrnghmd 20367 idrnghm 20374 c0rnghm 20451 zrrnghm 20452 subrngringnsg 20469 issubrng2 20474 rnglidlrng 21164 2idlcpblrng 21188 qus2idrng 21190 rngqiprngimf1lem 21211 rngqiprngimfo 21218 rngqiprngfulem2 21229 rngqiprngfulem4 21231 |
| Copyright terms: Public domain | W3C validator |