MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngabl Structured version   Visualization version   GIF version

Theorem rngabl 20040
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
Assertion
Ref Expression
rngabl (𝑅 ∈ Rng → 𝑅 ∈ Abel)

Proof of Theorem rngabl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20039 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1145 1 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Smgrpcsgrp 18592  Abelcabl 19660  mulGrpcmgp 20025  Rngcrng 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-rng 20038
This theorem is referenced by:  rnggrp  20043  rnglz  20050  rngansg  20055  prdsrngd  20061  imasrng  20062  isringrng  20172  opprrng  20230  isrnghm  20326  isrnghmd  20336  idrnghm  20343  c0rnghm  20420  zrrnghm  20421  subrngringnsg  20438  issubrng2  20443  rnglidlrng  21154  2idlcpblrng  21178  qus2idrng  21180  rngqiprngimf1lem  21201  rngqiprngimfo  21208  rngqiprngfulem2  21219  rngqiprngfulem4  21221
  Copyright terms: Public domain W3C validator