| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngabl | Structured version Visualization version GIF version | ||
| Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngabl | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2735 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 3 | eqid 2735 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2735 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 5 | 1, 2, 3, 4 | isrng 20114 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 6 | 5 | simp1bi 1145 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 Smgrpcsgrp 18696 Abelcabl 19762 mulGrpcmgp 20100 Rngcrng 20112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-rng 20113 |
| This theorem is referenced by: rnggrp 20118 rnglz 20125 rngansg 20130 prdsrngd 20136 imasrng 20137 isringrng 20247 opprrng 20305 isrnghm 20401 isrnghmd 20411 idrnghm 20418 c0rnghm 20495 zrrnghm 20496 subrngringnsg 20513 issubrng2 20518 rnglidlrng 21208 2idlcpblrng 21232 qus2idrng 21234 rngqiprngimf1lem 21255 rngqiprngimfo 21262 rngqiprngfulem2 21273 rngqiprngfulem4 21275 |
| Copyright terms: Public domain | W3C validator |