MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngabl Structured version   Visualization version   GIF version

Theorem rngabl 20182
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
Assertion
Ref Expression
rngabl (𝑅 ∈ Rng → 𝑅 ∈ Abel)

Proof of Theorem rngabl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2740 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2740 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2740 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20181 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1145 1 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Smgrpcsgrp 18756  Abelcabl 19823  mulGrpcmgp 20161  Rngcrng 20179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-rng 20180
This theorem is referenced by:  rnggrp  20185  rnglz  20192  rngansg  20197  prdsrngd  20203  imasrng  20204  isringrng  20310  opprrng  20371  isrnghm  20467  isrnghmd  20477  idrnghm  20484  c0rnghm  20561  zrrnghm  20562  subrngringnsg  20579  issubrng2  20584  rnglidlrng  21280  2idlcpblrng  21304  qus2idrng  21306  rngqiprngimf1lem  21327  rngqiprngimfo  21334  rngqiprngfulem2  21345  rngqiprngfulem4  21347
  Copyright terms: Public domain W3C validator