![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngabl | Structured version Visualization version GIF version |
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.) |
Ref | Expression |
---|---|
rngabl | ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2728 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
3 | eqid 2728 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2728 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 2, 3, 4 | isrng 20093 | . 2 ⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
6 | 5 | simp1bi 1143 | 1 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 .rcmulr 17233 Smgrpcsgrp 18677 Abelcabl 19735 mulGrpcmgp 20073 Rngcrng 20091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-rng 20092 |
This theorem is referenced by: rnggrp 20097 rnglz 20104 rngansg 20109 prdsrngd 20115 imasrng 20116 isringrng 20222 opprrng 20283 isrnghm 20379 isrnghmd 20389 idrnghm 20396 c0rnghm 20471 zrrnghm 20472 subrngringnsg 20489 issubrng2 20494 rnglidlrng 21141 2idlcpblrng 21164 qus2idrng 21166 rngqiprngimf1lem 21183 rngqiprngimfo 21190 rngqiprngfulem2 21201 rngqiprngfulem4 21203 |
Copyright terms: Public domain | W3C validator |