MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngabl Structured version   Visualization version   GIF version

Theorem rngabl 20075
Description: A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
Assertion
Ref Expression
rngabl (𝑅 ∈ Rng → 𝑅 ∈ Abel)

Proof of Theorem rngabl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
51, 2, 3, 4isrng 20074 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (mulGrp‘𝑅) ∈ Smgrp ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r𝑅)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑅)𝑦)(+g𝑅)(𝑥(.r𝑅)𝑧)) ∧ ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))))
65simp1bi 1145 1 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Smgrpcsgrp 18627  Abelcabl 19695  mulGrpcmgp 20060  Rngcrng 20072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-rng 20073
This theorem is referenced by:  rnggrp  20078  rnglz  20085  rngansg  20090  prdsrngd  20096  imasrng  20097  isringrng  20207  opprrng  20265  isrnghm  20361  isrnghmd  20371  idrnghm  20378  c0rnghm  20455  zrrnghm  20456  subrngringnsg  20473  issubrng2  20478  rnglidlrng  21189  2idlcpblrng  21213  qus2idrng  21215  rngqiprngimf1lem  21236  rngqiprngimfo  21243  rngqiprngfulem2  21254  rngqiprngfulem4  21256
  Copyright terms: Public domain W3C validator