Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0rnghm Structured version   Visualization version   GIF version

Theorem c0rnghm 44532
 Description: The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rnghm
StepHypRef Expression
1 ringssrng 44499 . . . . . 6 Ring ⊆ Rng
21a1i 11 . . . . 5 (𝑆 ∈ Rng → Ring ⊆ Rng)
32ssdifssd 4070 . . . 4 (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng)
43sseld 3914 . . 3 (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng))
54imdistani 572 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
6 rngabl 44496 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 18903 . . . . 5 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . 4 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
9 eldifi 4054 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
10 ringgrp 19295 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
119, 10syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
12 c0mhm.b . . . . 5 𝐵 = (Base‘𝑆)
13 c0mhm.0 . . . . 5 0 = (0g𝑇)
14 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1512, 13, 14c0ghm 44530 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
168, 11, 15syl2an 598 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
17 eqid 2798 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2798 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1917, 13, 180ring1eq0 44491 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
2019eqcomd 2804 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
2120mpteq2dv 5126 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2221adantl 485 . . . . 5 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2314, 22syl5eq 2845 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
24 eqid 2798 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2524rngmgp 44497 . . . . . 6 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Smgrp)
26 sgrpmgm 17898 . . . . . 6 ((mulGrp‘𝑆) ∈ Smgrp → (mulGrp‘𝑆) ∈ Mgm)
2725, 26syl 17 . . . . 5 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm)
28 eqid 2798 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2928ringmgp 19296 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
309, 29syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
3124, 12mgpbas 19238 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
3228, 18ringidval 19246 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
33 eqid 2798 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
3431, 32, 33c0mgm 44528 . . . . 5 (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3527, 30, 34syl2an 598 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3623, 35eqeltrd 2890 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3716, 36jca 515 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))
3824, 28isrnghmmul 44512 . 2 (𝐻 ∈ (𝑆 RngHomo 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))))
395, 37, 38sylanbrc 586 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∖ cdif 3878   ⊆ wss 3881   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  Basecbs 16475  0gc0g 16705  Mgmcmgm 17842  Smgrpcsgrp 17892  Mndcmnd 17903  Grpcgrp 18095   GrpHom cghm 18347  Abelcabl 18899  mulGrpcmgp 19232  1rcur 19244  Ringcrg 19290  NzRingcnzr 20023   MgmHom cmgmhm 44392  Rngcrng 44493   RngHomo crngh 44504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-nzr 20024  df-mgmhm 44394  df-rng0 44494  df-rnghomo 44506 This theorem is referenced by:  zrtermorngc  44620
 Copyright terms: Public domain W3C validator