Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0rnghm Structured version   Visualization version   GIF version

Theorem c0rnghm 46697
Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rnghm
StepHypRef Expression
1 ringssrng 46642 . . . . . 6 Ring ⊆ Rng
21a1i 11 . . . . 5 (𝑆 ∈ Rng → Ring ⊆ Rng)
32ssdifssd 4141 . . . 4 (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng)
43sseld 3980 . . 3 (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng))
54imdistani 569 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
6 rngabl 46637 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19647 . . . . 5 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . 4 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
9 eldifi 4125 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
10 ringgrp 20054 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
119, 10syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
12 c0mhm.b . . . . 5 𝐵 = (Base‘𝑆)
13 c0mhm.0 . . . . 5 0 = (0g𝑇)
14 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1512, 13, 14c0ghm 46695 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
168, 11, 15syl2an 596 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
17 eqid 2732 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2732 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1917, 13, 180ring1eq0 46632 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
2019eqcomd 2738 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
2120mpteq2dv 5249 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2221adantl 482 . . . . 5 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2314, 22eqtrid 2784 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
24 eqid 2732 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2524rngmgp 46638 . . . . . 6 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Smgrp)
26 sgrpmgm 18611 . . . . . 6 ((mulGrp‘𝑆) ∈ Smgrp → (mulGrp‘𝑆) ∈ Mgm)
2725, 26syl 17 . . . . 5 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm)
28 eqid 2732 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2928ringmgp 20055 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
309, 29syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
3124, 12mgpbas 19987 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
3228, 18ringidval 20000 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
33 eqid 2732 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
3431, 32, 33c0mgm 46693 . . . . 5 (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3527, 30, 34syl2an 596 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3623, 35eqeltrd 2833 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3716, 36jca 512 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))
3824, 28isrnghmmul 46676 . 2 (𝐻 ∈ (𝑆 RngHomo 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))))
395, 37, 38sylanbrc 583 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cdif 3944  wss 3947  cmpt 5230  cfv 6540  (class class class)co 7405  Basecbs 17140  0gc0g 17381  Mgmcmgm 18555  Smgrpcsgrp 18605  Mndcmnd 18621  Grpcgrp 18815   GrpHom cghm 19083  Abelcabl 19643  mulGrpcmgp 19981  1rcur 19998  Ringcrg 20049  NzRingcnzr 20283   MgmHom cmgmhm 46533  Rngcrng 46634   RngHomo crngh 46668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-ghm 19084  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-nzr 20284  df-mgmhm 46535  df-rng 46635  df-rnghomo 46670
This theorem is referenced by:  zrtermorngc  46852
  Copyright terms: Public domain W3C validator