Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0rnghm Structured version   Visualization version   GIF version

Theorem c0rnghm 43583
Description: The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rnghm
StepHypRef Expression
1 ringssrng 43550 . . . . . 6 Ring ⊆ Rng
21a1i 11 . . . . 5 (𝑆 ∈ Rng → Ring ⊆ Rng)
32ssdifssd 4011 . . . 4 (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng)
43sseld 3859 . . 3 (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng))
54imdistani 561 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
6 rngabl 43547 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 18683 . . . . 5 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . 4 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
9 eldifi 3995 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
10 ringgrp 19037 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
119, 10syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
12 c0mhm.b . . . . 5 𝐵 = (Base‘𝑆)
13 c0mhm.0 . . . . 5 0 = (0g𝑇)
14 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1512, 13, 14c0ghm 43581 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
168, 11, 15syl2an 587 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
17 eqid 2780 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2780 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1917, 13, 180ring1eq0 43542 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
2019eqcomd 2786 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
2120mpteq2dv 5028 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2221adantl 474 . . . . 5 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2314, 22syl5eq 2828 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
24 eqid 2780 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2524rngmgp 43548 . . . . . 6 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ SGrp)
26 sgrpmgm 17769 . . . . . 6 ((mulGrp‘𝑆) ∈ SGrp → (mulGrp‘𝑆) ∈ Mgm)
2725, 26syl 17 . . . . 5 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm)
28 eqid 2780 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2928ringmgp 19038 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
309, 29syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
3124, 12mgpbas 18980 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
3228, 18ringidval 18988 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
33 eqid 2780 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
3431, 32, 33c0mgm 43579 . . . . 5 (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3527, 30, 34syl2an 587 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3623, 35eqeltrd 2868 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3716, 36jca 504 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))
3824, 28isrnghmmul 43563 . 2 (𝐻 ∈ (𝑆 RngHomo 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))))
395, 37, 38sylanbrc 575 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  cdif 3828  wss 3831  cmpt 5013  cfv 6193  (class class class)co 6982  Basecbs 16345  0gc0g 16575  Mgmcmgm 17720  SGrpcsgrp 17763  Mndcmnd 17774  Grpcgrp 17903   GrpHom cghm 18138  Abelcabl 18679  mulGrpcmgp 18974  1rcur 18986  Ringcrg 19032  NzRingcnzr 19763   MgmHom cmgmhm 43447  Rngcrng 43544   RngHomo crngh 43555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-oadd 7915  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-dju 9130  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-n0 11714  df-xnn0 11786  df-z 11800  df-uz 12065  df-fz 12715  df-hash 13512  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-plusg 16440  df-0g 16577  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-grp 17906  df-minusg 17907  df-ghm 18139  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-nzr 19764  df-mgmhm 43449  df-rng0 43545  df-rnghomo 43557
This theorem is referenced by:  zrtermorngc  43671
  Copyright terms: Public domain W3C validator