| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c0rnghm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| c0rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
| c0rhm.0 | ⊢ 0 = (0g‘𝑇) |
| c0rhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
| Ref | Expression |
|---|---|
| c0rnghm | ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringssrng 20204 | . . . . . 6 ⊢ Ring ⊆ Rng | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑆 ∈ Rng → Ring ⊆ Rng) |
| 3 | 2 | ssdifssd 4094 | . . . 4 ⊢ (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng) |
| 4 | 3 | sseld 3928 | . . 3 ⊢ (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng)) |
| 5 | 4 | imdistani 568 | . 2 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng)) |
| 6 | rngabl 20073 | . . . . 5 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
| 7 | ablgrp 19697 | . . . . 5 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Grp) |
| 9 | eldifi 4078 | . . . . 5 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring) | |
| 10 | ringgrp 20156 | . . . . 5 ⊢ (𝑇 ∈ Ring → 𝑇 ∈ Grp) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp) |
| 12 | c0rhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 13 | c0rhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 14 | c0rhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 15 | 12, 13, 14 | c0ghm 20379 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
| 16 | 8, 11, 15 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
| 17 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 18 | eqid 2731 | . . . . . . . . 9 ⊢ (1r‘𝑇) = (1r‘𝑇) | |
| 19 | 17, 13, 18 | 0ring1eq0 20448 | . . . . . . . 8 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (1r‘𝑇) = 0 ) |
| 20 | 19 | eqcomd 2737 | . . . . . . 7 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r‘𝑇)) |
| 21 | 20 | mpteq2dv 5183 | . . . . . 6 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (𝑥 ∈ 𝐵 ↦ 0 ) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
| 22 | 21 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ 𝐵 ↦ 0 ) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
| 23 | 14, 22 | eqtrid 2778 | . . . 4 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
| 24 | eqid 2731 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 25 | 24 | rngmgp 20074 | . . . . . 6 ⊢ (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Smgrp) |
| 26 | sgrpmgm 18632 | . . . . . 6 ⊢ ((mulGrp‘𝑆) ∈ Smgrp → (mulGrp‘𝑆) ∈ Mgm) | |
| 27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm) |
| 28 | eqid 2731 | . . . . . . 7 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
| 29 | 28 | ringmgp 20157 | . . . . . 6 ⊢ (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd) |
| 30 | 9, 29 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd) |
| 31 | 24, 12 | mgpbas 20063 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
| 32 | 28, 18 | ringidval 20101 | . . . . . 6 ⊢ (1r‘𝑇) = (0g‘(mulGrp‘𝑇)) |
| 33 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) | |
| 34 | 31, 32, 33 | c0mgm 20377 | . . . . 5 ⊢ (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
| 35 | 27, 30, 34 | syl2an 596 | . . . 4 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
| 36 | 23, 35 | eqeltrd 2831 | . . 3 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
| 37 | 16, 36 | jca 511 | . 2 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))) |
| 38 | 24, 28 | isrnghmmul 20360 | . 2 ⊢ (𝐻 ∈ (𝑆 RngHom 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))) |
| 39 | 5, 37, 38 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 0gc0g 17343 Mgmcmgm 18546 MgmHom cmgmhm 18598 Smgrpcsgrp 18626 Mndcmnd 18642 Grpcgrp 18846 GrpHom cghm 19124 Abelcabl 19693 mulGrpcmgp 20058 Rngcrng 20070 1rcur 20099 Ringcrg 20151 RngHom crnghm 20352 NzRingcnzr 20427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-mgmhm 18600 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-rnghm 20354 df-nzr 20428 |
| This theorem is referenced by: zrtermorngc 20558 |
| Copyright terms: Public domain | W3C validator |