Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0rnghm Structured version   Visualization version   GIF version

Theorem c0rnghm 46285
Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rnghm
StepHypRef Expression
1 ringssrng 46252 . . . . . 6 Ring ⊆ Rng
21a1i 11 . . . . 5 (𝑆 ∈ Rng → Ring ⊆ Rng)
32ssdifssd 4107 . . . 4 (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng)
43sseld 3948 . . 3 (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng))
54imdistani 570 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
6 rngabl 46249 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19574 . . . . 5 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . 4 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
9 eldifi 4091 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
10 ringgrp 19976 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
119, 10syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
12 c0mhm.b . . . . 5 𝐵 = (Base‘𝑆)
13 c0mhm.0 . . . . 5 0 = (0g𝑇)
14 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1512, 13, 14c0ghm 46283 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
168, 11, 15syl2an 597 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
17 eqid 2737 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2737 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1917, 13, 180ring1eq0 46244 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
2019eqcomd 2743 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
2120mpteq2dv 5212 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2221adantl 483 . . . . 5 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2314, 22eqtrid 2789 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
24 eqid 2737 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2524rngmgp 46250 . . . . . 6 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Smgrp)
26 sgrpmgm 18558 . . . . . 6 ((mulGrp‘𝑆) ∈ Smgrp → (mulGrp‘𝑆) ∈ Mgm)
2725, 26syl 17 . . . . 5 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm)
28 eqid 2737 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2928ringmgp 19977 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
309, 29syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
3124, 12mgpbas 19909 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
3228, 18ringidval 19922 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
33 eqid 2737 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
3431, 32, 33c0mgm 46281 . . . . 5 (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3527, 30, 34syl2an 597 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3623, 35eqeltrd 2838 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3716, 36jca 513 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))
3824, 28isrnghmmul 46265 . 2 (𝐻 ∈ (𝑆 RngHomo 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))))
395, 37, 38sylanbrc 584 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cdif 3912  wss 3915  cmpt 5193  cfv 6501  (class class class)co 7362  Basecbs 17090  0gc0g 17328  Mgmcmgm 18502  Smgrpcsgrp 18552  Mndcmnd 18563  Grpcgrp 18755   GrpHom cghm 19012  Abelcabl 19570  mulGrpcmgp 19903  1rcur 19920  Ringcrg 19971  NzRingcnzr 20743   MgmHom cmgmhm 46145  Rngcrng 46246   RngHomo crngh 46257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-plusg 17153  df-0g 17330  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-grp 18758  df-minusg 18759  df-ghm 19013  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-nzr 20744  df-mgmhm 46147  df-rng 46247  df-rnghomo 46259
This theorem is referenced by:  zrtermorngc  46373
  Copyright terms: Public domain W3C validator