MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0rnghm Structured version   Visualization version   GIF version

Theorem c0rnghm 20495
Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0rhm.b 𝐵 = (Base‘𝑆)
c0rhm.0 0 = (0g𝑇)
c0rhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rnghm
StepHypRef Expression
1 ringssrng 20246 . . . . . 6 Ring ⊆ Rng
21a1i 11 . . . . 5 (𝑆 ∈ Rng → Ring ⊆ Rng)
32ssdifssd 4122 . . . 4 (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng)
43sseld 3957 . . 3 (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng))
54imdistani 568 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
6 rngabl 20115 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19766 . . . . 5 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . 4 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
9 eldifi 4106 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
10 ringgrp 20198 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
119, 10syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
12 c0rhm.b . . . . 5 𝐵 = (Base‘𝑆)
13 c0rhm.0 . . . . 5 0 = (0g𝑇)
14 c0rhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1512, 13, 14c0ghm 20421 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
168, 11, 15syl2an 596 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
17 eqid 2735 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
18 eqid 2735 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1917, 13, 180ring1eq0 20493 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
2019eqcomd 2741 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
2120mpteq2dv 5215 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2221adantl 481 . . . . 5 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
2314, 22eqtrid 2782 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
24 eqid 2735 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2524rngmgp 20116 . . . . . 6 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Smgrp)
26 sgrpmgm 18702 . . . . . 6 ((mulGrp‘𝑆) ∈ Smgrp → (mulGrp‘𝑆) ∈ Mgm)
2725, 26syl 17 . . . . 5 (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm)
28 eqid 2735 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2928ringmgp 20199 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
309, 29syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
3124, 12mgpbas 20105 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
3228, 18ringidval 20143 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
33 eqid 2735 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
3431, 32, 33c0mgm 20419 . . . . 5 (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3527, 30, 34syl2an 596 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3623, 35eqeltrd 2834 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
3716, 36jca 511 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))
3824, 28isrnghmmul 20402 . 2 (𝐻 ∈ (𝑆 RngHom 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))))
395, 37, 38sylanbrc 583 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  wss 3926  cmpt 5201  cfv 6531  (class class class)co 7405  Basecbs 17228  0gc0g 17453  Mgmcmgm 18616   MgmHom cmgmhm 18668  Smgrpcsgrp 18696  Mndcmnd 18712  Grpcgrp 18916   GrpHom cghm 19195  Abelcabl 19762  mulGrpcmgp 20100  Rngcrng 20112  1rcur 20141  Ringcrg 20193   RngHom crnghm 20394  NzRingcnzr 20472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-mgmhm 18670  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-rnghm 20396  df-nzr 20473
This theorem is referenced by:  zrtermorngc  20603
  Copyright terms: Public domain W3C validator