Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0rnghm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
c0mhm.b | ⊢ 𝐵 = (Base‘𝑆) |
c0mhm.0 | ⊢ 0 = (0g‘𝑇) |
c0mhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
Ref | Expression |
---|---|
c0rnghm | ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringssrng 45778 | . . . . . 6 ⊢ Ring ⊆ Rng | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑆 ∈ Rng → Ring ⊆ Rng) |
3 | 2 | ssdifssd 4088 | . . . 4 ⊢ (𝑆 ∈ Rng → (Ring ∖ NzRing) ⊆ Rng) |
4 | 3 | sseld 3930 | . . 3 ⊢ (𝑆 ∈ Rng → (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng)) |
5 | 4 | imdistani 569 | . 2 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng)) |
6 | rngabl 45775 | . . . . 5 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
7 | ablgrp 19478 | . . . . 5 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Grp) |
9 | eldifi 4072 | . . . . 5 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring) | |
10 | ringgrp 19875 | . . . . 5 ⊢ (𝑇 ∈ Ring → 𝑇 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp) |
12 | c0mhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
13 | c0mhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
14 | c0mhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
15 | 12, 13, 14 | c0ghm 45809 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
16 | 8, 11, 15 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
17 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
18 | eqid 2736 | . . . . . . . . 9 ⊢ (1r‘𝑇) = (1r‘𝑇) | |
19 | 17, 13, 18 | 0ring1eq0 45770 | . . . . . . . 8 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (1r‘𝑇) = 0 ) |
20 | 19 | eqcomd 2742 | . . . . . . 7 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r‘𝑇)) |
21 | 20 | mpteq2dv 5191 | . . . . . 6 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (𝑥 ∈ 𝐵 ↦ 0 ) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
22 | 21 | adantl 482 | . . . . 5 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ 𝐵 ↦ 0 ) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
23 | 14, 22 | eqtrid 2788 | . . . 4 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
24 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
25 | 24 | rngmgp 45776 | . . . . . 6 ⊢ (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Smgrp) |
26 | sgrpmgm 18469 | . . . . . 6 ⊢ ((mulGrp‘𝑆) ∈ Smgrp → (mulGrp‘𝑆) ∈ Mgm) | |
27 | 25, 26 | syl 17 | . . . . 5 ⊢ (𝑆 ∈ Rng → (mulGrp‘𝑆) ∈ Mgm) |
28 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
29 | 28 | ringmgp 19876 | . . . . . 6 ⊢ (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd) |
30 | 9, 29 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd) |
31 | 24, 12 | mgpbas 19813 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
32 | 28, 18 | ringidval 19826 | . . . . . 6 ⊢ (1r‘𝑇) = (0g‘(mulGrp‘𝑇)) |
33 | eqid 2736 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) | |
34 | 31, 32, 33 | c0mgm 45807 | . . . . 5 ⊢ (((mulGrp‘𝑆) ∈ Mgm ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
35 | 27, 30, 34 | syl2an 596 | . . . 4 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
36 | 23, 35 | eqeltrd 2837 | . . 3 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
37 | 16, 36 | jca 512 | . 2 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))) |
38 | 24, 28 | isrnghmmul 45791 | . 2 ⊢ (𝐻 ∈ (𝑆 RngHomo 𝑇) ↔ ((𝑆 ∈ Rng ∧ 𝑇 ∈ Rng) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))))) |
39 | 5, 37, 38 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHomo 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 ⊆ wss 3897 ↦ cmpt 5172 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 0gc0g 17239 Mgmcmgm 18413 Smgrpcsgrp 18463 Mndcmnd 18474 Grpcgrp 18665 GrpHom cghm 18919 Abelcabl 19474 mulGrpcmgp 19807 1rcur 19824 Ringcrg 19870 NzRingcnzr 20626 MgmHom cmgmhm 45671 Rngcrng 45772 RngHomo crngh 45783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-fz 13333 df-hash 14138 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-mhm 18519 df-grp 18668 df-minusg 18669 df-ghm 18920 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-nzr 20627 df-mgmhm 45673 df-rng0 45773 df-rnghomo 45785 |
This theorem is referenced by: zrtermorngc 45899 |
Copyright terms: Public domain | W3C validator |