Step | Hyp | Ref
| Expression |
1 | | simpl 484 |
. . . 4
β’ (((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β (π β (UnifOnβπ) β§ π΄ β π)) |
2 | | fvexd 6862 |
. . . . . . 7
β’ ((π β (UnifOnβπ) β§ π΄ β π) β (unifTopβπ) β V) |
3 | | elfvex 6885 |
. . . . . . . . 9
β’ (π β (UnifOnβπ) β π β V) |
4 | 3 | adantr 482 |
. . . . . . . 8
β’ ((π β (UnifOnβπ) β§ π΄ β π) β π β V) |
5 | | simpr 486 |
. . . . . . . 8
β’ ((π β (UnifOnβπ) β§ π΄ β π) β π΄ β π) |
6 | 4, 5 | ssexd 5286 |
. . . . . . 7
β’ ((π β (UnifOnβπ) β§ π΄ β π) β π΄ β V) |
7 | | elrest 17316 |
. . . . . . 7
β’
(((unifTopβπ)
β V β§ π΄ β V)
β (π β
((unifTopβπ)
βΎt π΄)
β βπ β
(unifTopβπ)π = (π β© π΄))) |
8 | 2, 6, 7 | syl2anc 585 |
. . . . . 6
β’ ((π β (UnifOnβπ) β§ π΄ β π) β (π β ((unifTopβπ) βΎt π΄) β βπ β (unifTopβπ)π = (π β© π΄))) |
9 | 8 | biimpa 478 |
. . . . 5
β’ (((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β βπ β (unifTopβπ)π = (π β© π΄)) |
10 | | inss2 4194 |
. . . . . . 7
β’ (π β© π΄) β π΄ |
11 | | sseq1 3974 |
. . . . . . 7
β’ (π = (π β© π΄) β (π β π΄ β (π β© π΄) β π΄)) |
12 | 10, 11 | mpbiri 258 |
. . . . . 6
β’ (π = (π β© π΄) β π β π΄) |
13 | 12 | rexlimivw 3149 |
. . . . 5
β’
(βπ β
(unifTopβπ)π = (π β© π΄) β π β π΄) |
14 | 9, 13 | syl 17 |
. . . 4
β’ (((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β π β π΄) |
15 | | simp-5l 784 |
. . . . . . . . . 10
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β π β (UnifOnβπ)) |
16 | 15 | ad2antrr 725 |
. . . . . . . . 9
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β π β (UnifOnβπ)) |
17 | 6 | ad6antr 735 |
. . . . . . . . . 10
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β π΄ β V) |
18 | 17, 17 | xpexd 7690 |
. . . . . . . . 9
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β (π΄ Γ π΄) β V) |
19 | | simplr 768 |
. . . . . . . . 9
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β π’ β π) |
20 | | elrestr 17317 |
. . . . . . . . 9
β’ ((π β (UnifOnβπ) β§ (π΄ Γ π΄) β V β§ π’ β π) β (π’ β© (π΄ Γ π΄)) β (π βΎt (π΄ Γ π΄))) |
21 | 16, 18, 19, 20 | syl3anc 1372 |
. . . . . . . 8
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β (π’ β© (π΄ Γ π΄)) β (π βΎt (π΄ Γ π΄))) |
22 | | inss1 4193 |
. . . . . . . . . . . . 13
β’ (π’ β© (π΄ Γ π΄)) β π’ |
23 | | imass1 6058 |
. . . . . . . . . . . . 13
β’ ((π’ β© (π΄ Γ π΄)) β π’ β ((π’ β© (π΄ Γ π΄)) β {π₯}) β (π’ β {π₯})) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . . . . . 12
β’ ((π’ β© (π΄ Γ π΄)) β {π₯}) β (π’ β {π₯}) |
25 | | sstr 3957 |
. . . . . . . . . . . 12
β’ ((((π’ β© (π΄ Γ π΄)) β {π₯}) β (π’ β {π₯}) β§ (π’ β {π₯}) β π) β ((π’ β© (π΄ Γ π΄)) β {π₯}) β π) |
26 | 24, 25 | mpan 689 |
. . . . . . . . . . 11
β’ ((π’ β {π₯}) β π β ((π’ β© (π΄ Γ π΄)) β {π₯}) β π) |
27 | | imassrn 6029 |
. . . . . . . . . . . . . . 15
β’ ((π’ β© (π΄ Γ π΄)) β {π₯}) β ran (π’ β© (π΄ Γ π΄)) |
28 | | rnin 6104 |
. . . . . . . . . . . . . . 15
β’ ran
(π’ β© (π΄ Γ π΄)) β (ran π’ β© ran (π΄ Γ π΄)) |
29 | 27, 28 | sstri 3958 |
. . . . . . . . . . . . . 14
β’ ((π’ β© (π΄ Γ π΄)) β {π₯}) β (ran π’ β© ran (π΄ Γ π΄)) |
30 | | inss2 4194 |
. . . . . . . . . . . . . 14
β’ (ran
π’ β© ran (π΄ Γ π΄)) β ran (π΄ Γ π΄) |
31 | 29, 30 | sstri 3958 |
. . . . . . . . . . . . 13
β’ ((π’ β© (π΄ Γ π΄)) β {π₯}) β ran (π΄ Γ π΄) |
32 | | rnxpid 6130 |
. . . . . . . . . . . . 13
β’ ran
(π΄ Γ π΄) = π΄ |
33 | 31, 32 | sseqtri 3985 |
. . . . . . . . . . . 12
β’ ((π’ β© (π΄ Γ π΄)) β {π₯}) β π΄ |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
β’ ((π’ β {π₯}) β π β ((π’ β© (π΄ Γ π΄)) β {π₯}) β π΄) |
35 | 26, 34 | ssind 4197 |
. . . . . . . . . 10
β’ ((π’ β {π₯}) β π β ((π’ β© (π΄ Γ π΄)) β {π₯}) β (π β© π΄)) |
36 | 35 | adantl 483 |
. . . . . . . . 9
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β ((π’ β© (π΄ Γ π΄)) β {π₯}) β (π β© π΄)) |
37 | | simpllr 775 |
. . . . . . . . 9
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β π = (π β© π΄)) |
38 | 36, 37 | sseqtrrd 3990 |
. . . . . . . 8
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β ((π’ β© (π΄ Γ π΄)) β {π₯}) β π) |
39 | | imaeq1 6013 |
. . . . . . . . . 10
β’ (π£ = (π’ β© (π΄ Γ π΄)) β (π£ β {π₯}) = ((π’ β© (π΄ Γ π΄)) β {π₯})) |
40 | 39 | sseq1d 3980 |
. . . . . . . . 9
β’ (π£ = (π’ β© (π΄ Γ π΄)) β ((π£ β {π₯}) β π β ((π’ β© (π΄ Γ π΄)) β {π₯}) β π)) |
41 | 40 | rspcev 3584 |
. . . . . . . 8
β’ (((π’ β© (π΄ Γ π΄)) β (π βΎt (π΄ Γ π΄)) β§ ((π’ β© (π΄ Γ π΄)) β {π₯}) β π) β βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π) |
42 | 21, 38, 41 | syl2anc 585 |
. . . . . . 7
β’
((((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β§ π’ β π) β§ (π’ β {π₯}) β π) β βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π) |
43 | | simplr 768 |
. . . . . . . 8
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β π β (unifTopβπ)) |
44 | | simpllr 775 |
. . . . . . . . . 10
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β π₯ β π) |
45 | | simpr 486 |
. . . . . . . . . 10
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β π = (π β© π΄)) |
46 | 44, 45 | eleqtrd 2840 |
. . . . . . . . 9
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β π₯ β (π β© π΄)) |
47 | 46 | elin1d 4163 |
. . . . . . . 8
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β π₯ β π) |
48 | | elutop 23601 |
. . . . . . . . . 10
β’ (π β (UnifOnβπ) β (π β (unifTopβπ) β (π β π β§ βπ₯ β π βπ’ β π (π’ β {π₯}) β π))) |
49 | 48 | simplbda 501 |
. . . . . . . . 9
β’ ((π β (UnifOnβπ) β§ π β (unifTopβπ)) β βπ₯ β π βπ’ β π (π’ β {π₯}) β π) |
50 | 49 | r19.21bi 3237 |
. . . . . . . 8
β’ (((π β (UnifOnβπ) β§ π β (unifTopβπ)) β§ π₯ β π) β βπ’ β π (π’ β {π₯}) β π) |
51 | 15, 43, 47, 50 | syl21anc 837 |
. . . . . . 7
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β βπ’ β π (π’ β {π₯}) β π) |
52 | 42, 51 | r19.29a 3160 |
. . . . . 6
β’
((((((π β
(UnifOnβπ) β§
π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β§ π β (unifTopβπ)) β§ π = (π β© π΄)) β βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π) |
53 | 9 | adantr 482 |
. . . . . 6
β’ ((((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β βπ β (unifTopβπ)π = (π β© π΄)) |
54 | 52, 53 | r19.29a 3160 |
. . . . 5
β’ ((((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β§ π₯ β π) β βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π) |
55 | 54 | ralrimiva 3144 |
. . . 4
β’ (((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β βπ₯ β π βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π) |
56 | | trust 23597 |
. . . . . 6
β’ ((π β (UnifOnβπ) β§ π΄ β π) β (π βΎt (π΄ Γ π΄)) β (UnifOnβπ΄)) |
57 | | elutop 23601 |
. . . . . 6
β’ ((π βΎt (π΄ Γ π΄)) β (UnifOnβπ΄) β (π β (unifTopβ(π βΎt (π΄ Γ π΄))) β (π β π΄ β§ βπ₯ β π βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π))) |
58 | 56, 57 | syl 17 |
. . . . 5
β’ ((π β (UnifOnβπ) β§ π΄ β π) β (π β (unifTopβ(π βΎt (π΄ Γ π΄))) β (π β π΄ β§ βπ₯ β π βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π))) |
59 | 58 | biimpar 479 |
. . . 4
β’ (((π β (UnifOnβπ) β§ π΄ β π) β§ (π β π΄ β§ βπ₯ β π βπ£ β (π βΎt (π΄ Γ π΄))(π£ β {π₯}) β π)) β π β (unifTopβ(π βΎt (π΄ Γ π΄)))) |
60 | 1, 14, 55, 59 | syl12anc 836 |
. . 3
β’ (((π β (UnifOnβπ) β§ π΄ β π) β§ π β ((unifTopβπ) βΎt π΄)) β π β (unifTopβ(π βΎt (π΄ Γ π΄)))) |
61 | 60 | ex 414 |
. 2
β’ ((π β (UnifOnβπ) β§ π΄ β π) β (π β ((unifTopβπ) βΎt π΄) β π β (unifTopβ(π βΎt (π΄ Γ π΄))))) |
62 | 61 | ssrdv 3955 |
1
β’ ((π β (UnifOnβπ) β§ π΄ β π) β ((unifTopβπ) βΎt π΄) β (unifTopβ(π βΎt (π΄ Γ π΄)))) |