MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restutop Structured version   Visualization version   GIF version

Theorem restutop 24125
Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
restutop ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem restutop
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋))
2 fvexd 6873 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (unifTop‘𝑈) ∈ V)
3 elfvex 6896 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
43adantr 480 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 ∈ V)
5 simpr 484 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5ssexd 5279 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 elrest 17390 . . . . . . 7 (((unifTop‘𝑈) ∈ V ∧ 𝐴 ∈ V) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
82, 6, 7syl2anc 584 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
98biimpa 476 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
10 inss2 4201 . . . . . . 7 (𝑎𝐴) ⊆ 𝐴
11 sseq1 3972 . . . . . . 7 (𝑏 = (𝑎𝐴) → (𝑏𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
1210, 11mpbiri 258 . . . . . 6 (𝑏 = (𝑎𝐴) → 𝑏𝐴)
1312rexlimivw 3130 . . . . 5 (∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴) → 𝑏𝐴)
149, 13syl 17 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → 𝑏𝐴)
15 simp-5l 784 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑈 ∈ (UnifOn‘𝑋))
1615ad2antrr 726 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
176ad6antr 736 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝐴 ∈ V)
1817, 17xpexd 7727 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → (𝐴 × 𝐴) ∈ V)
19 simplr 768 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑢𝑈)
20 elrestr 17391 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑢𝑈) → (𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2116, 18, 19, 20syl3anc 1373 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → (𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
22 inss1 4200 . . . . . . . . . . . . 13 (𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑢
23 imass1 6072 . . . . . . . . . . . . 13 ((𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑢 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥}))
2422, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥})
25 sstr 3955 . . . . . . . . . . . 12 ((((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥}) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑎)
2624, 25mpan 690 . . . . . . . . . . 11 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑎)
27 imassrn 6042 . . . . . . . . . . . . . . 15 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ ran (𝑢 ∩ (𝐴 × 𝐴))
28 rnin 6119 . . . . . . . . . . . . . . 15 ran (𝑢 ∩ (𝐴 × 𝐴)) ⊆ (ran 𝑢 ∩ ran (𝐴 × 𝐴))
2927, 28sstri 3956 . . . . . . . . . . . . . 14 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (ran 𝑢 ∩ ran (𝐴 × 𝐴))
30 inss2 4201 . . . . . . . . . . . . . 14 (ran 𝑢 ∩ ran (𝐴 × 𝐴)) ⊆ ran (𝐴 × 𝐴)
3129, 30sstri 3956 . . . . . . . . . . . . 13 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ ran (𝐴 × 𝐴)
32 rnxpid 6146 . . . . . . . . . . . . 13 ran (𝐴 × 𝐴) = 𝐴
3331, 32sseqtri 3995 . . . . . . . . . . . 12 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝐴
3433a1i 11 . . . . . . . . . . 11 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝐴)
3526, 34ssind 4204 . . . . . . . . . 10 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑎𝐴))
3635adantl 481 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑎𝐴))
37 simpllr 775 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑏 = (𝑎𝐴))
3836, 37sseqtrrd 3984 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏)
39 imaeq1 6026 . . . . . . . . . 10 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) → (𝑣 “ {𝑥}) = ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}))
4039sseq1d 3978 . . . . . . . . 9 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) → ((𝑣 “ {𝑥}) ⊆ 𝑏 ↔ ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏))
4140rspcev 3588 . . . . . . . 8 (((𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)) ∧ ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
4221, 38, 41syl2anc 584 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
43 simplr 768 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑎 ∈ (unifTop‘𝑈))
44 simpllr 775 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥𝑏)
45 simpr 484 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑏 = (𝑎𝐴))
4644, 45eleqtrd 2830 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥 ∈ (𝑎𝐴))
4746elin1d 4167 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥𝑎)
48 elutop 24121 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑎 ∈ (unifTop‘𝑈) ↔ (𝑎𝑋 ∧ ∀𝑥𝑎𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)))
4948simplbda 499 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ (unifTop‘𝑈)) → ∀𝑥𝑎𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5049r19.21bi 3229 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑥𝑎) → ∃𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5115, 43, 47, 50syl21anc 837 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → ∃𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5242, 51r19.29a 3141 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
539adantr 480 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
5452, 53r19.29a 3141 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
5554ralrimiva 3125 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
56 trust 24117 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
57 elutop 24121 . . . . . 6 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)))
5856, 57syl 17 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)))
5958biimpar 477 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))))
601, 14, 55, 59syl12anc 836 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))))
6160ex 412 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))))
6261ssrdv 3952 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  {csn 4589   × cxp 5636  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  t crest 17383  UnifOncust 24087  unifTopcutop 24118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-rest 17385  df-ust 24088  df-utop 24119
This theorem is referenced by:  restutopopn  24126
  Copyright terms: Public domain W3C validator