MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restutop Structured version   Visualization version   GIF version

Theorem restutop 22848
Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
restutop ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem restutop
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋))
2 fvexd 6687 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (unifTop‘𝑈) ∈ V)
3 elfvex 6705 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
43adantr 483 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 ∈ V)
5 simpr 487 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5ssexd 5230 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 elrest 16703 . . . . . . 7 (((unifTop‘𝑈) ∈ V ∧ 𝐴 ∈ V) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
82, 6, 7syl2anc 586 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
98biimpa 479 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
10 inss2 4208 . . . . . . 7 (𝑎𝐴) ⊆ 𝐴
11 sseq1 3994 . . . . . . 7 (𝑏 = (𝑎𝐴) → (𝑏𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
1210, 11mpbiri 260 . . . . . 6 (𝑏 = (𝑎𝐴) → 𝑏𝐴)
1312rexlimivw 3284 . . . . 5 (∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴) → 𝑏𝐴)
149, 13syl 17 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → 𝑏𝐴)
15 simp-5l 783 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑈 ∈ (UnifOn‘𝑋))
1615ad2antrr 724 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
176ad6antr 734 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝐴 ∈ V)
1817, 17xpexd 7476 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → (𝐴 × 𝐴) ∈ V)
19 simplr 767 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑢𝑈)
20 elrestr 16704 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑢𝑈) → (𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2116, 18, 19, 20syl3anc 1367 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → (𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
22 inss1 4207 . . . . . . . . . . . . 13 (𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑢
23 imass1 5966 . . . . . . . . . . . . 13 ((𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑢 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥}))
2422, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥})
25 sstr 3977 . . . . . . . . . . . 12 ((((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥}) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑎)
2624, 25mpan 688 . . . . . . . . . . 11 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑎)
27 imassrn 5942 . . . . . . . . . . . . . . 15 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ ran (𝑢 ∩ (𝐴 × 𝐴))
28 rnin 6007 . . . . . . . . . . . . . . 15 ran (𝑢 ∩ (𝐴 × 𝐴)) ⊆ (ran 𝑢 ∩ ran (𝐴 × 𝐴))
2927, 28sstri 3978 . . . . . . . . . . . . . 14 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (ran 𝑢 ∩ ran (𝐴 × 𝐴))
30 inss2 4208 . . . . . . . . . . . . . 14 (ran 𝑢 ∩ ran (𝐴 × 𝐴)) ⊆ ran (𝐴 × 𝐴)
3129, 30sstri 3978 . . . . . . . . . . . . 13 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ ran (𝐴 × 𝐴)
32 rnxpid 6032 . . . . . . . . . . . . 13 ran (𝐴 × 𝐴) = 𝐴
3331, 32sseqtri 4005 . . . . . . . . . . . 12 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝐴
3433a1i 11 . . . . . . . . . . 11 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝐴)
3526, 34ssind 4211 . . . . . . . . . 10 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑎𝐴))
3635adantl 484 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑎𝐴))
37 simpllr 774 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑏 = (𝑎𝐴))
3836, 37sseqtrrd 4010 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏)
39 imaeq1 5926 . . . . . . . . . 10 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) → (𝑣 “ {𝑥}) = ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}))
4039sseq1d 4000 . . . . . . . . 9 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) → ((𝑣 “ {𝑥}) ⊆ 𝑏 ↔ ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏))
4140rspcev 3625 . . . . . . . 8 (((𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)) ∧ ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
4221, 38, 41syl2anc 586 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
43 simplr 767 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑎 ∈ (unifTop‘𝑈))
44 simpllr 774 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥𝑏)
45 simpr 487 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑏 = (𝑎𝐴))
4644, 45eleqtrd 2917 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥 ∈ (𝑎𝐴))
4746elin1d 4177 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥𝑎)
48 elutop 22844 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑎 ∈ (unifTop‘𝑈) ↔ (𝑎𝑋 ∧ ∀𝑥𝑎𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)))
4948simplbda 502 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ (unifTop‘𝑈)) → ∀𝑥𝑎𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5049r19.21bi 3210 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑥𝑎) → ∃𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5115, 43, 47, 50syl21anc 835 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → ∃𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5242, 51r19.29a 3291 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
539adantr 483 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
5452, 53r19.29a 3291 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
5554ralrimiva 3184 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
56 trust 22840 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
57 elutop 22844 . . . . . 6 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)))
5856, 57syl 17 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)))
5958biimpar 480 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))))
601, 14, 55, 59syl12anc 834 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))))
6160ex 415 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))))
6261ssrdv 3975 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  {csn 4569   × cxp 5555  ran crn 5558  cima 5560  cfv 6357  (class class class)co 7158  t crest 16696  UnifOncust 22810  unifTopcutop 22841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-rest 16698  df-ust 22811  df-utop 22842
This theorem is referenced by:  restutopopn  22849
  Copyright terms: Public domain W3C validator