MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restutop Structured version   Visualization version   GIF version

Theorem restutop 22261
Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017.)
Assertion
Ref Expression
restutop ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))

Proof of Theorem restutop
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 468 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋))
2 fvexd 6344 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (unifTop‘𝑈) ∈ V)
3 elfvex 6362 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
43adantr 466 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 ∈ V)
5 simpr 471 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
64, 5ssexd 4939 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 elrest 16296 . . . . . . 7 (((unifTop‘𝑈) ∈ V ∧ 𝐴 ∈ V) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
82, 6, 7syl2anc 565 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) ↔ ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴)))
98biimpa 462 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
10 inss2 3982 . . . . . . 7 (𝑎𝐴) ⊆ 𝐴
11 sseq1 3775 . . . . . . 7 (𝑏 = (𝑎𝐴) → (𝑏𝐴 ↔ (𝑎𝐴) ⊆ 𝐴))
1210, 11mpbiri 248 . . . . . 6 (𝑏 = (𝑎𝐴) → 𝑏𝐴)
1312rexlimivw 3177 . . . . 5 (∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴) → 𝑏𝐴)
149, 13syl 17 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → 𝑏𝐴)
15 simp-5l 764 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑈 ∈ (UnifOn‘𝑋))
1615ad2antrr 697 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑈 ∈ (UnifOn‘𝑋))
176ad6antr 712 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝐴 ∈ V)
18 xpexg 7107 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ∈ V)
1917, 17, 18syl2anc 565 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → (𝐴 × 𝐴) ∈ V)
20 simplr 744 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑢𝑈)
21 elrestr 16297 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐴 × 𝐴) ∈ V ∧ 𝑢𝑈) → (𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
2216, 19, 20, 21syl3anc 1476 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → (𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)))
23 inss1 3981 . . . . . . . . . . . . 13 (𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑢
24 imass1 5641 . . . . . . . . . . . . 13 ((𝑢 ∩ (𝐴 × 𝐴)) ⊆ 𝑢 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥}))
2523, 24ax-mp 5 . . . . . . . . . . . 12 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥})
26 sstr 3760 . . . . . . . . . . . 12 ((((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑢 “ {𝑥}) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑎)
2725, 26mpan 662 . . . . . . . . . . 11 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑎)
28 imassrn 5618 . . . . . . . . . . . . . . 15 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ ran (𝑢 ∩ (𝐴 × 𝐴))
29 rnin 5683 . . . . . . . . . . . . . . 15 ran (𝑢 ∩ (𝐴 × 𝐴)) ⊆ (ran 𝑢 ∩ ran (𝐴 × 𝐴))
3028, 29sstri 3761 . . . . . . . . . . . . . 14 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (ran 𝑢 ∩ ran (𝐴 × 𝐴))
31 inss2 3982 . . . . . . . . . . . . . 14 (ran 𝑢 ∩ ran (𝐴 × 𝐴)) ⊆ ran (𝐴 × 𝐴)
3230, 31sstri 3761 . . . . . . . . . . . . 13 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ ran (𝐴 × 𝐴)
33 rnxpid 5708 . . . . . . . . . . . . 13 ran (𝐴 × 𝐴) = 𝐴
3432, 33sseqtri 3786 . . . . . . . . . . . 12 ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝐴
3534a1i 11 . . . . . . . . . . 11 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝐴)
3627, 35ssind 3985 . . . . . . . . . 10 ((𝑢 “ {𝑥}) ⊆ 𝑎 → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑎𝐴))
3736adantl 467 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ (𝑎𝐴))
38 simpllr 752 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → 𝑏 = (𝑎𝐴))
3937, 38sseqtr4d 3791 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏)
40 imaeq1 5602 . . . . . . . . . 10 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) → (𝑣 “ {𝑥}) = ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}))
4140sseq1d 3781 . . . . . . . . 9 (𝑣 = (𝑢 ∩ (𝐴 × 𝐴)) → ((𝑣 “ {𝑥}) ⊆ 𝑏 ↔ ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏))
4241rspcev 3460 . . . . . . . 8 (((𝑢 ∩ (𝐴 × 𝐴)) ∈ (𝑈t (𝐴 × 𝐴)) ∧ ((𝑢 ∩ (𝐴 × 𝐴)) “ {𝑥}) ⊆ 𝑏) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
4322, 39, 42syl2anc 565 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) ∧ 𝑢𝑈) ∧ (𝑢 “ {𝑥}) ⊆ 𝑎) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
44 simplr 744 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑎 ∈ (unifTop‘𝑈))
45 inss1 3981 . . . . . . . . 9 (𝑎𝐴) ⊆ 𝑎
46 simpllr 752 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥𝑏)
47 simpr 471 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑏 = (𝑎𝐴))
4846, 47eleqtrd 2852 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥 ∈ (𝑎𝐴))
4945, 48sseldi 3750 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → 𝑥𝑎)
50 elutop 22257 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑎 ∈ (unifTop‘𝑈) ↔ (𝑎𝑋 ∧ ∀𝑥𝑎𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)))
5150simplbda 481 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ (unifTop‘𝑈)) → ∀𝑥𝑎𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5251r19.21bi 3081 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑥𝑎) → ∃𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5315, 44, 49, 52syl21anc 1475 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → ∃𝑢𝑈 (𝑢 “ {𝑥}) ⊆ 𝑎)
5443, 53r19.29a 3226 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) ∧ 𝑎 ∈ (unifTop‘𝑈)) ∧ 𝑏 = (𝑎𝐴)) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
559adantr 466 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) → ∃𝑎 ∈ (unifTop‘𝑈)𝑏 = (𝑎𝐴))
5654, 55r19.29a 3226 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) ∧ 𝑥𝑏) → ∃𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
5756ralrimiva 3115 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)
58 trust 22253 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
59 elutop 22257 . . . . . 6 ((𝑈t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)))
6058, 59syl 17 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))) ↔ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)))
6160biimpar 463 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ (𝑏𝐴 ∧ ∀𝑥𝑏𝑣 ∈ (𝑈t (𝐴 × 𝐴))(𝑣 “ {𝑥}) ⊆ 𝑏)) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))))
621, 14, 57, 61syl12anc 1474 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴)) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴))))
6362ex 397 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → (𝑏 ∈ ((unifTop‘𝑈) ↾t 𝐴) → 𝑏 ∈ (unifTop‘(𝑈t (𝐴 × 𝐴)))))
6463ssrdv 3758 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((unifTop‘𝑈) ↾t 𝐴) ⊆ (unifTop‘(𝑈t (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  cin 3722  wss 3723  {csn 4316   × cxp 5247  ran crn 5250  cima 5252  cfv 6031  (class class class)co 6793  t crest 16289  UnifOncust 22223  unifTopcutop 22254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-rest 16291  df-ust 22224  df-utop 22255
This theorem is referenced by:  restutopopn  22262
  Copyright terms: Public domain W3C validator