![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rniun | Structured version Visualization version GIF version |
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
rniun | ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3277 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
2 | vex 3470 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | 2 | elrn2 5883 | . . . . 5 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵) |
4 | 3 | rexbii 3086 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵) |
5 | eliun 4992 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
6 | 5 | exbii 1842 | . . . 4 ⊢ (∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) |
8 | 2 | elrn2 5883 | . . 3 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 4992 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵) |
11 | 10 | eqriv 2721 | 1 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∃wrex 3062 ⟨cop 4627 ∪ ciun 4988 ran crn 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-iun 4990 df-br 5140 df-opab 5202 df-cnv 5675 df-dm 5677 df-rn 5678 |
This theorem is referenced by: rnuni 6139 fiun 7923 f1iun 7924 cnextf 23894 iunrelexp0 42967 |
Copyright terms: Public domain | W3C validator |