![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rniun | Structured version Visualization version GIF version |
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
rniun | ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3285 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | 2 | elrn2 5892 | . . . . 5 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵) |
4 | 3 | rexbii 3094 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵) |
5 | eliun 5001 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
6 | 5 | exbii 1850 | . . . 4 ⊢ (∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 303 | . . 3 ⊢ (∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) |
8 | 2 | elrn2 5892 | . . 3 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 5001 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 302 | . 2 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵) |
11 | 10 | eqriv 2729 | 1 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 ⟨cop 4634 ∪ ciun 4997 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-iun 4999 df-br 5149 df-opab 5211 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: rnuni 6148 fiun 7928 f1iun 7929 cnextf 23569 iunrelexp0 42443 |
Copyright terms: Public domain | W3C validator |