MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rniun Structured version   Visualization version   GIF version

Theorem rniun 6167
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵

Proof of Theorem rniun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3288 . . . 4 (∃𝑥𝐴𝑦𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑦𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3484 . . . . . 6 𝑧 ∈ V
32elrn2 5903 . . . . 5 (𝑧 ∈ ran 𝐵 ↔ ∃𝑦𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3094 . . . 4 (∃𝑥𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥𝐴𝑦𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4995 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1848 . . . 4 (∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑦𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 304 . . 3 (∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧 ∈ ran 𝐵)
82elrn2 5903 . . 3 (𝑧 ∈ ran 𝑥𝐴 𝐵 ↔ ∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4995 . . 3 (𝑧 𝑥𝐴 ran 𝐵 ↔ ∃𝑥𝐴 𝑧 ∈ ran 𝐵)
107, 8, 93bitr4i 303 . 2 (𝑧 ∈ ran 𝑥𝐴 𝐵𝑧 𝑥𝐴 ran 𝐵)
1110eqriv 2734 1 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2108  wrex 3070  cop 4632   ciun 4991  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-iun 4993  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by:  rnuni  6168  fiun  7967  f1iun  7968  cnextf  24074  iunrelexp0  43715
  Copyright terms: Public domain W3C validator