MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rniun Structured version   Visualization version   GIF version

Theorem rniun 6104
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
rniun ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵

Proof of Theorem rniun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3270 . . . 4 (∃𝑥𝐴𝑦𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑦𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3451 . . . . . 6 𝑧 ∈ V
32elrn2 5852 . . . . 5 (𝑧 ∈ ran 𝐵 ↔ ∃𝑦𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3094 . . . 4 (∃𝑥𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥𝐴𝑦𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4962 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1851 . . . 4 (∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑦𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 304 . . 3 (∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧 ∈ ran 𝐵)
82elrn2 5852 . . 3 (𝑧 ∈ ran 𝑥𝐴 𝐵 ↔ ∃𝑦𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4962 . . 3 (𝑧 𝑥𝐴 ran 𝐵 ↔ ∃𝑥𝐴 𝑧 ∈ ran 𝐵)
107, 8, 93bitr4i 303 . 2 (𝑧 ∈ ran 𝑥𝐴 𝐵𝑧 𝑥𝐴 ran 𝐵)
1110eqriv 2730 1 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wex 1782  wcel 2107  wrex 3070  cop 4596   ciun 4958  ran crn 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-iun 4960  df-br 5110  df-opab 5172  df-cnv 5645  df-dm 5647  df-rn 5648
This theorem is referenced by:  rnuni  6105  fiun  7879  f1iun  7880  cnextf  23440  iunrelexp0  42066
  Copyright terms: Public domain W3C validator