![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rniun | Structured version Visualization version GIF version |
Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
rniun | ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3281 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
2 | vex 3474 | . . . . . 6 ⊢ 𝑧 ∈ V | |
3 | 2 | elrn2 5890 | . . . . 5 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵) |
4 | 3 | rexbii 3090 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦⟨𝑦, 𝑧⟩ ∈ 𝐵) |
5 | eliun 4996 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
6 | 5 | exbii 1843 | . . . 4 ⊢ (∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) |
8 | 2 | elrn2 5890 | . . 3 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 4996 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵) |
11 | 10 | eqriv 2725 | 1 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃wrex 3066 ⟨cop 4631 ∪ ciun 4992 ran crn 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-iun 4994 df-br 5144 df-opab 5206 df-cnv 5681 df-dm 5683 df-rn 5684 |
This theorem is referenced by: rnuni 6148 fiun 7941 f1iun 7942 cnextf 23964 iunrelexp0 43123 |
Copyright terms: Public domain | W3C validator |