| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rniun | Structured version Visualization version GIF version | ||
| Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| rniun | ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 3260 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦〈𝑦, 𝑧〉 ∈ 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
| 2 | vex 3441 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 3 | 2 | elrn2 5838 | . . . . 5 ⊢ (𝑧 ∈ ran 𝐵 ↔ ∃𝑦〈𝑦, 𝑧〉 ∈ 𝐵) |
| 4 | 3 | rexbii 3080 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦〈𝑦, 𝑧〉 ∈ 𝐵) |
| 5 | eliun 4947 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
| 6 | 5 | exbii 1849 | . . . 4 ⊢ (∃𝑦〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) |
| 7 | 1, 4, 6 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑦〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) |
| 8 | 2 | elrn2 5838 | . . 3 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑦〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 9 | eliun 4947 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ran 𝐵) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ ran ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ran 𝐵) |
| 11 | 10 | eqriv 2730 | 1 ⊢ ran ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 〈cop 4583 ∪ ciun 4943 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-iun 4945 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: rnuni 6103 fiun 7884 f1iun 7885 cnextf 24001 iunrelexp0 43859 |
| Copyright terms: Public domain | W3C validator |