MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvin Structured version   Visualization version   GIF version

Theorem cnvin 6091
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
StepHypRef Expression
1 cnvdif 6090 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴(𝐴𝐵))
2 cnvdif 6090 . . . 4 (𝐴𝐵) = (𝐴𝐵)
32difeq2i 4070 . . 3 (𝐴(𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
41, 3eqtri 2754 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
5 dfin4 4225 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65cnveqi 5813 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
7 dfin4 4225 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
84, 6, 73eqtr4i 2764 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3894  cin 3896  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  rnin  6093  dminxp  6127  imainrect  6128  cnvcnv  6139  cnvrescnv  6142  pjdm  21644  ordtrest2  23119  ustexsym  24131  trust  24144  ordtcnvNEW  33933  ordtrest2NEW  33936  msrf  35586  elrn3  35806  pprodcnveq  35925  tposrescnv  48989
  Copyright terms: Public domain W3C validator