MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvin Structured version   Visualization version   GIF version

Theorem cnvin 6133
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
StepHypRef Expression
1 cnvdif 6132 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴(𝐴𝐵))
2 cnvdif 6132 . . . 4 (𝐴𝐵) = (𝐴𝐵)
32difeq2i 4098 . . 3 (𝐴(𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
41, 3eqtri 2758 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
5 dfin4 4253 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65cnveqi 5854 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
7 dfin4 4253 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
84, 6, 73eqtr4i 2768 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3923  cin 3925  ccnv 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  rnin  6135  dminxp  6169  imainrect  6170  cnvcnv  6181  cnvrescnv  6184  pjdm  21667  ordtrest2  23142  ustexsym  24154  trust  24168  ordtcnvNEW  33951  ordtrest2NEW  33954  msrf  35564  elrn3  35779  pprodcnveq  35901  tposrescnv  48854
  Copyright terms: Public domain W3C validator