| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvin | Structured version Visualization version GIF version | ||
| Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvdif 6092 | . . 3 ⊢ ◡(𝐴 ∖ (𝐴 ∖ 𝐵)) = (◡𝐴 ∖ ◡(𝐴 ∖ 𝐵)) | |
| 2 | cnvdif 6092 | . . . 4 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | |
| 3 | 2 | difeq2i 4074 | . . 3 ⊢ (◡𝐴 ∖ ◡(𝐴 ∖ 𝐵)) = (◡𝐴 ∖ (◡𝐴 ∖ ◡𝐵)) |
| 4 | 1, 3 | eqtri 2752 | . 2 ⊢ ◡(𝐴 ∖ (𝐴 ∖ 𝐵)) = (◡𝐴 ∖ (◡𝐴 ∖ ◡𝐵)) |
| 5 | dfin4 4229 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
| 6 | 5 | cnveqi 5817 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ◡(𝐴 ∖ (𝐴 ∖ 𝐵)) |
| 7 | dfin4 4229 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = (◡𝐴 ∖ (◡𝐴 ∖ ◡𝐵)) | |
| 8 | 4, 6, 7 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 ∩ cin 3902 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: rnin 6095 dminxp 6129 imainrect 6130 cnvcnv 6141 cnvrescnv 6144 pjdm 21614 ordtrest2 23089 ustexsym 24101 trust 24115 ordtcnvNEW 33893 ordtrest2NEW 33896 msrf 35525 elrn3 35745 pprodcnveq 35867 tposrescnv 48873 |
| Copyright terms: Public domain | W3C validator |