MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvin Structured version   Visualization version   GIF version

Theorem cnvin 6144
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
StepHypRef Expression
1 cnvdif 6143 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴(𝐴𝐵))
2 cnvdif 6143 . . . 4 (𝐴𝐵) = (𝐴𝐵)
32difeq2i 4116 . . 3 (𝐴(𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
41, 3eqtri 2756 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
5 dfin4 4264 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65cnveqi 5872 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
7 dfin4 4264 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
84, 6, 73eqtr4i 2766 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cdif 3942  cin 3944  ccnv 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-cnv 5681
This theorem is referenced by:  rnin  6146  dminxp  6179  imainrect  6180  cnvcnv  6191  cnvrescnv  6194  pjdm  21635  ordtrest2  23102  ustexsym  24114  trust  24128  ordtcnvNEW  33516  ordtrest2NEW  33519  msrf  35147  elrn3  35351  pprodcnveq  35474
  Copyright terms: Public domain W3C validator