MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvin Structured version   Visualization version   GIF version

Theorem cnvin 6156
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
StepHypRef Expression
1 cnvdif 6155 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴(𝐴𝐵))
2 cnvdif 6155 . . . 4 (𝐴𝐵) = (𝐴𝐵)
32difeq2i 4118 . . 3 (𝐴(𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
41, 3eqtri 2754 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
5 dfin4 4269 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65cnveqi 5881 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
7 dfin4 4269 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
84, 6, 73eqtr4i 2764 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cdif 3944  cin 3946  ccnv 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-xp 5688  df-rel 5689  df-cnv 5690
This theorem is referenced by:  rnin  6158  dminxp  6191  imainrect  6192  cnvcnv  6203  cnvrescnv  6206  pjdm  21705  ordtrest2  23199  ustexsym  24211  trust  24225  ordtcnvNEW  33735  ordtrest2NEW  33738  msrf  35370  elrn3  35584  pprodcnveq  35707
  Copyright terms: Public domain W3C validator