![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvin | Structured version Visualization version GIF version |
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvin | ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvdif 6100 | . . 3 ⊢ ◡(𝐴 ∖ (𝐴 ∖ 𝐵)) = (◡𝐴 ∖ ◡(𝐴 ∖ 𝐵)) | |
2 | cnvdif 6100 | . . . 4 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) | |
3 | 2 | difeq2i 4083 | . . 3 ⊢ (◡𝐴 ∖ ◡(𝐴 ∖ 𝐵)) = (◡𝐴 ∖ (◡𝐴 ∖ ◡𝐵)) |
4 | 1, 3 | eqtri 2761 | . 2 ⊢ ◡(𝐴 ∖ (𝐴 ∖ 𝐵)) = (◡𝐴 ∖ (◡𝐴 ∖ ◡𝐵)) |
5 | dfin4 4231 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
6 | 5 | cnveqi 5834 | . 2 ⊢ ◡(𝐴 ∩ 𝐵) = ◡(𝐴 ∖ (𝐴 ∖ 𝐵)) |
7 | dfin4 4231 | . 2 ⊢ (◡𝐴 ∩ ◡𝐵) = (◡𝐴 ∖ (◡𝐴 ∖ ◡𝐵)) | |
8 | 4, 6, 7 | 3eqtr4i 2771 | 1 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∖ cdif 3911 ∩ cin 3913 ◡ccnv 5636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 |
This theorem is referenced by: rnin 6103 dminxp 6136 imainrect 6137 cnvcnv 6148 cnvrescnv 6151 pjdm 21136 ordtrest2 22578 ustexsym 23590 trust 23604 ordtcnvNEW 32565 ordtrest2NEW 32568 msrf 34200 elrn3 34398 pprodcnveq 34521 |
Copyright terms: Public domain | W3C validator |