MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvin Structured version   Visualization version   GIF version

Theorem cnvin 6093
Description: Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvin (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvin
StepHypRef Expression
1 cnvdif 6092 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴(𝐴𝐵))
2 cnvdif 6092 . . . 4 (𝐴𝐵) = (𝐴𝐵)
32difeq2i 4074 . . 3 (𝐴(𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
41, 3eqtri 2752 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴𝐵))
5 dfin4 4229 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65cnveqi 5817 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
7 dfin4 4229 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
84, 6, 73eqtr4i 2762 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3900  cin 3902  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627
This theorem is referenced by:  rnin  6095  dminxp  6129  imainrect  6130  cnvcnv  6141  cnvrescnv  6144  pjdm  21614  ordtrest2  23089  ustexsym  24101  trust  24115  ordtcnvNEW  33893  ordtrest2NEW  33896  msrf  35525  elrn3  35745  pprodcnveq  35867  tposrescnv  48873
  Copyright terms: Public domain W3C validator