![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnopabss | Structured version Visualization version GIF version |
Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.) |
Ref | Expression |
---|---|
rnopabss | ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5972 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | 19.42v 1953 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)) | |
3 | 2 | abbii 2809 | . . 3 ⊢ {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} |
4 | ssab2 4092 | . . 3 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 4033 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
6 | 1, 5 | eqsstri 4033 | 1 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1778 ∈ wcel 2108 {cab 2714 ⊆ wss 3966 {copab 5213 ran crn 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-cnv 5701 df-dm 5703 df-rn 5704 |
This theorem is referenced by: modelaxreplem2 44974 |
Copyright terms: Public domain | W3C validator |