MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnopabss Structured version   Visualization version   GIF version

Theorem rnopabss 5980
Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.)
Assertion
Ref Expression
rnopabss ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopabss
StepHypRef Expression
1 rnopab 5979 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)}
2 19.42v 1953 . . . 4 (∃𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 ∧ ∃𝑥𝜑))
32abbii 2812 . . 3 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
4 ssab2 4102 . . 3 {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ⊆ 𝐴
53, 4eqsstri 4043 . 2 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} ⊆ 𝐴
61, 5eqsstri 4043 1 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1777  wcel 2108  {cab 2717  wss 3976  {copab 5228  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator