MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnopabss Structured version   Visualization version   GIF version

Theorem rnopabss 5921
Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.)
Assertion
Ref Expression
rnopabss ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopabss
StepHypRef Expression
1 rnopab 5920 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)}
2 19.42v 1953 . . . 4 (∃𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 ∧ ∃𝑥𝜑))
32abbii 2797 . . 3 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
4 ssab2 4044 . . 3 {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ⊆ 𝐴
53, 4eqsstri 3995 . 2 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} ⊆ 𝐴
61, 5eqsstri 3995 1 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1779  wcel 2109  {cab 2708  wss 3916  {copab 5171  ran crn 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-cnv 5648  df-dm 5650  df-rn 5651
This theorem is referenced by:  modelaxreplem2  44962
  Copyright terms: Public domain W3C validator