MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnopabss Structured version   Visualization version   GIF version

Theorem rnopabss 5946
Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.)
Assertion
Ref Expression
rnopabss ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopabss
StepHypRef Expression
1 rnopab 5945 . 2 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)}
2 19.42v 1952 . . . 4 (∃𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 ∧ ∃𝑥𝜑))
32abbii 2801 . . 3 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
4 ssab2 4059 . . 3 {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ⊆ 𝐴
53, 4eqsstri 4010 . 2 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} ⊆ 𝐴
61, 5eqsstri 4010 1 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1778  wcel 2107  {cab 2712  wss 3931  {copab 5185  ran crn 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-cnv 5673  df-dm 5675  df-rn 5676
This theorem is referenced by:  modelaxreplem2  44953
  Copyright terms: Public domain W3C validator