![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnopabss | Structured version Visualization version GIF version |
Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.) |
Ref | Expression |
---|---|
rnopabss | ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5979 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | 19.42v 1953 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)) | |
3 | 2 | abbii 2812 | . . 3 ⊢ {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} |
4 | ssab2 4102 | . . 3 ⊢ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 4043 | . 2 ⊢ {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
6 | 1, 5 | eqsstri 4043 | 1 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 {copab 5228 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |