MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnopab3 Structured version   Visualization version   GIF version

Theorem rnopab3 5974
Description: The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.)
Assertion
Ref Expression
rnopab3 (∀𝑦𝐴𝑥𝜑 ↔ ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopab3
StepHypRef Expression
1 df-ral 3062 . 2 (∀𝑦𝐴𝑥𝜑 ↔ ∀𝑦(𝑦𝐴 → ∃𝑥𝜑))
2 pm4.71 557 . . 3 ((𝑦𝐴 → ∃𝑥𝜑) ↔ (𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)))
32albii 1818 . 2 (∀𝑦(𝑦𝐴 → ∃𝑥𝜑) ↔ ∀𝑦(𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)))
4 rnopab 5972 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)}
5 19.42v 1953 . . . . . 6 (∃𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 ∧ ∃𝑥𝜑))
65abbii 2809 . . . . 5 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
74, 6eqtri 2765 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
87eqeq1i 2742 . . 3 (ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴 ↔ {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} = 𝐴)
9 eqcom 2744 . . 3 (𝐴 = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ↔ {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} = 𝐴)
10 eqabb 2881 . . 3 (𝐴 = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ↔ ∀𝑦(𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)))
118, 9, 103bitr2ri 300 . 2 (∀𝑦(𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)) ↔ ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴)
121, 3, 113bitri 297 1 (∀𝑦𝐴𝑥𝜑 ↔ ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2108  {cab 2714  wral 3061  {copab 5213  ran crn 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-cnv 5701  df-dm 5703  df-rn 5704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator