| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnopab3 | Structured version Visualization version GIF version | ||
| Description: The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.) |
| Ref | Expression |
|---|---|
| rnopab3 | ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3046 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∃𝑥𝜑)) | |
| 2 | pm4.71 557 | . . 3 ⊢ ((𝑦 ∈ 𝐴 → ∃𝑥𝜑) ↔ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑))) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ∃𝑥𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑))) |
| 4 | rnopab 5921 | . . . . 5 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 5 | 19.42v 1953 | . . . . . 6 ⊢ (∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)) | |
| 6 | 5 | abbii 2797 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} |
| 7 | 4, 6 | eqtri 2753 | . . . 4 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} |
| 8 | 7 | eqeq1i 2735 | . . 3 ⊢ (ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} = 𝐴) |
| 9 | eqcom 2737 | . . 3 ⊢ (𝐴 = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} = 𝐴) | |
| 10 | eqabb 2868 | . . 3 ⊢ (𝐴 = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑))) | |
| 11 | 8, 9, 10 | 3bitr2ri 300 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)) ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| 12 | 1, 3, 11 | 3bitri 297 | 1 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ∀wral 3045 {copab 5172 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |