MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnopab3 Structured version   Visualization version   GIF version

Theorem rnopab3 5895
Description: The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.)
Assertion
Ref Expression
rnopab3 (∀𝑦𝐴𝑥𝜑 ↔ ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopab3
StepHypRef Expression
1 df-ral 3048 . 2 (∀𝑦𝐴𝑥𝜑 ↔ ∀𝑦(𝑦𝐴 → ∃𝑥𝜑))
2 pm4.71 557 . . 3 ((𝑦𝐴 → ∃𝑥𝜑) ↔ (𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)))
32albii 1820 . 2 (∀𝑦(𝑦𝐴 → ∃𝑥𝜑) ↔ ∀𝑦(𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)))
4 rnopab 5893 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)}
5 19.42v 1954 . . . . . 6 (∃𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 ∧ ∃𝑥𝜑))
65abbii 2798 . . . . 5 {𝑦 ∣ ∃𝑥(𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
74, 6eqtri 2754 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)}
87eqeq1i 2736 . . 3 (ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴 ↔ {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} = 𝐴)
9 eqcom 2738 . . 3 (𝐴 = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ↔ {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} = 𝐴)
10 eqabb 2870 . . 3 (𝐴 = {𝑦 ∣ (𝑦𝐴 ∧ ∃𝑥𝜑)} ↔ ∀𝑦(𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)))
118, 9, 103bitr2ri 300 . 2 (∀𝑦(𝑦𝐴 ↔ (𝑦𝐴 ∧ ∃𝑥𝜑)) ↔ ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴)
121, 3, 113bitri 297 1 (∀𝑦𝐴𝑥𝜑 ↔ ran {⟨𝑥, 𝑦⟩ ∣ (𝑦𝐴𝜑)} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  {copab 5151  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator