![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnopab3 | Structured version Visualization version GIF version |
Description: The range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025.) |
Ref | Expression |
---|---|
rnopab3 | ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3062 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → ∃𝑥𝜑)) | |
2 | pm4.71 557 | . . 3 ⊢ ((𝑦 ∈ 𝐴 → ∃𝑥𝜑) ↔ (𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑))) | |
3 | 2 | albii 1818 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ∃𝑥𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑))) |
4 | rnopab 5972 | . . . . 5 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
5 | 19.42v 1953 | . . . . . 6 ⊢ (∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)) | |
6 | 5 | abbii 2809 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} |
7 | 4, 6 | eqtri 2765 | . . . 4 ⊢ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} |
8 | 7 | eqeq1i 2742 | . . 3 ⊢ (ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴 ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} = 𝐴) |
9 | eqcom 2744 | . . 3 ⊢ (𝐴 = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} = 𝐴) | |
10 | eqabb 2881 | . . 3 ⊢ (𝐴 = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑))) | |
11 | 8, 9, 10 | 3bitr2ri 300 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 ↔ (𝑦 ∈ 𝐴 ∧ ∃𝑥𝜑)) ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
12 | 1, 3, 11 | 3bitri 297 | 1 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥𝜑 ↔ ran {〈𝑥, 𝑦〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2108 {cab 2714 ∀wral 3061 {copab 5213 ran crn 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-cnv 5701 df-dm 5703 df-rn 5704 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |