| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndnpr | Structured version Visualization version GIF version | ||
| Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| 2ndnpr | ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7919 | . 2 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | |
| 2 | rnsnn0 6150 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | |
| 3 | 2 | biimpri 228 | . . . . 5 ⊢ (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V)) |
| 4 | 3 | necon1bi 2956 | . . . 4 ⊢ (¬ 𝐴 ∈ (V × V) → ran {𝐴} = ∅) |
| 5 | 4 | unieqd 4867 | . . 3 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ ran {𝐴} = ∪ ∅) |
| 6 | uni0 4882 | . . 3 ⊢ ∪ ∅ = ∅ | |
| 7 | 5, 6 | eqtrdi 2782 | . 2 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ ran {𝐴} = ∅) |
| 8 | 1, 7 | eqtrid 2778 | 1 ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 {csn 4571 ∪ cuni 4854 × cxp 5609 ran crn 5612 ‘cfv 6476 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fv 6484 df-2nd 7917 |
| This theorem is referenced by: wlkvv 29600 |
| Copyright terms: Public domain | W3C validator |