MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndnpr Structured version   Visualization version   GIF version

Theorem 2ndnpr 7980
Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
2ndnpr 𝐴 ∈ (V × V) → (2nd𝐴) = ∅)

Proof of Theorem 2ndnpr
StepHypRef Expression
1 2ndval 7978 . 2 (2nd𝐴) = ran {𝐴}
2 rnsnn0 6208 . . . . . 6 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
32biimpri 227 . . . . 5 (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
43necon1bi 2970 . . . 4 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
54unieqd 4923 . . 3 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
6 uni0 4940 . . 3 ∅ = ∅
75, 6eqtrdi 2789 . 2 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
81, 7eqtrid 2785 1 𝐴 ∈ (V × V) → (2nd𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  c0 4323  {csn 4629   cuni 4909   × cxp 5675  ran crn 5678  cfv 6544  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fv 6552  df-2nd 7976
This theorem is referenced by:  wlkvv  28884
  Copyright terms: Public domain W3C validator