MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndnpr Structured version   Visualization version   GIF version

Theorem 2ndnpr 7976
Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
2ndnpr 𝐴 ∈ (V × V) → (2nd𝐴) = ∅)

Proof of Theorem 2ndnpr
StepHypRef Expression
1 2ndval 7974 . 2 (2nd𝐴) = ran {𝐴}
2 rnsnn0 6184 . . . . . 6 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
32biimpri 228 . . . . 5 (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
43necon1bi 2954 . . . 4 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
54unieqd 4887 . . 3 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
6 uni0 4902 . . 3 ∅ = ∅
75, 6eqtrdi 2781 . 2 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
81, 7eqtrid 2777 1 𝐴 ∈ (V × V) → (2nd𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  {csn 4592   cuni 4874   × cxp 5639  ran crn 5642  cfv 6514  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-2nd 7972
This theorem is referenced by:  wlkvv  29562
  Copyright terms: Public domain W3C validator