MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndnpr Structured version   Visualization version   GIF version

Theorem 2ndnpr 7921
Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
2ndnpr 𝐴 ∈ (V × V) → (2nd𝐴) = ∅)

Proof of Theorem 2ndnpr
StepHypRef Expression
1 2ndval 7919 . 2 (2nd𝐴) = ran {𝐴}
2 rnsnn0 6150 . . . . . 6 (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
32biimpri 228 . . . . 5 (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V))
43necon1bi 2956 . . . 4 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
54unieqd 4867 . . 3 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
6 uni0 4882 . . 3 ∅ = ∅
75, 6eqtrdi 2782 . 2 𝐴 ∈ (V × V) → ran {𝐴} = ∅)
81, 7eqtrid 2778 1 𝐴 ∈ (V × V) → (2nd𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4278  {csn 4571   cuni 4854   × cxp 5609  ran crn 5612  cfv 6476  2nd c2nd 7915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-iota 6432  df-fun 6478  df-fv 6484  df-2nd 7917
This theorem is referenced by:  wlkvv  29600
  Copyright terms: Public domain W3C validator