| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndnpr | Structured version Visualization version GIF version | ||
| Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| 2ndnpr | ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7950 | . 2 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | |
| 2 | rnsnn0 6169 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | |
| 3 | 2 | biimpri 228 | . . . . 5 ⊢ (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V)) |
| 4 | 3 | necon1bi 2953 | . . . 4 ⊢ (¬ 𝐴 ∈ (V × V) → ran {𝐴} = ∅) |
| 5 | 4 | unieqd 4880 | . . 3 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ ran {𝐴} = ∪ ∅) |
| 6 | uni0 4895 | . . 3 ⊢ ∪ ∅ = ∅ | |
| 7 | 5, 6 | eqtrdi 2780 | . 2 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ ran {𝐴} = ∅) |
| 8 | 1, 7 | eqtrid 2776 | 1 ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 {csn 4585 ∪ cuni 4867 × cxp 5629 ran crn 5632 ‘cfv 6499 2nd c2nd 7946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-2nd 7948 |
| This theorem is referenced by: wlkvv 29530 |
| Copyright terms: Public domain | W3C validator |