| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndnpr | Structured version Visualization version GIF version | ||
| Description: Value of the second-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| 2ndnpr | ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndval 7933 | . 2 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} | |
| 2 | rnsnn0 6163 | . . . . . 6 ⊢ (𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅) | |
| 3 | 2 | biimpri 228 | . . . . 5 ⊢ (ran {𝐴} ≠ ∅ → 𝐴 ∈ (V × V)) |
| 4 | 3 | necon1bi 2957 | . . . 4 ⊢ (¬ 𝐴 ∈ (V × V) → ran {𝐴} = ∅) |
| 5 | 4 | unieqd 4873 | . . 3 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ ran {𝐴} = ∪ ∅) |
| 6 | uni0 4888 | . . 3 ⊢ ∪ ∅ = ∅ | |
| 7 | 5, 6 | eqtrdi 2784 | . 2 ⊢ (¬ 𝐴 ∈ (V × V) → ∪ ran {𝐴} = ∅) |
| 8 | 1, 7 | eqtrid 2780 | 1 ⊢ (¬ 𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 {csn 4577 ∪ cuni 4860 × cxp 5619 ran crn 5622 ‘cfv 6489 2nd c2nd 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fv 6497 df-2nd 7931 |
| This theorem is referenced by: wlkvv 29626 |
| Copyright terms: Public domain | W3C validator |