| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextcusp | Structured version Visualization version GIF version | ||
| Description: An extension of ℝ is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextcusp | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 3 | eqid 2730 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 33997 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
| 5 | 4 | simp3bi 1147 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5639 ↾ cres 5643 ‘cfv 6514 0cc0 11075 Basecbs 17186 distcds 17236 DivRingcdr 20645 metUnifcmetu 21262 ℤModczlm 21417 chrcchr 21418 UnifStcuss 24148 CUnifSpccusp 24191 NrmRingcnrg 24474 NrmModcnlm 24475 ℝExt crrext 33991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-iota 6467 df-fv 6522 df-rrext 33996 |
| This theorem is referenced by: rrhfe 34009 rrhcne 34010 sitgclg 34340 |
| Copyright terms: Public domain | W3C validator |