![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextcusp | Structured version Visualization version GIF version |
Description: An extension of ℝ is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextcusp | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2771 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | eqid 2771 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 30384 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp3bi 1141 | . 2 ⊢ (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))) |
6 | 5 | simpld 482 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 × cxp 5247 ↾ cres 5251 ‘cfv 6031 0cc0 10138 Basecbs 16064 distcds 16158 DivRingcdr 18957 metUnifcmetu 19952 ℤModczlm 20064 chrcchr 20065 UnifStcuss 22277 CUnifSpccusp 22321 NrmRingcnrg 22604 NrmModcnlm 22605 ℝExt crrext 30378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-xp 5255 df-res 5261 df-iota 5994 df-fv 6039 df-rrext 30383 |
This theorem is referenced by: rrhfe 30396 rrhcne 30397 sitgclg 30744 |
Copyright terms: Public domain | W3C validator |