Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextcusp Structured version   Visualization version   GIF version

Theorem rrextcusp 34039
Description: An extension of is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextcusp (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp)

Proof of Theorem rrextcusp
StepHypRef Expression
1 eqid 2733 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2733 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2733 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 34034 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp3bi 1147 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))
65simpld 494 1 (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   × cxp 5617  cres 5621  cfv 6486  0cc0 11013  Basecbs 17122  distcds 17172  DivRingcdr 20646  metUnifcmetu 21284  ℤModczlm 21439  chrcchr 21440  UnifStcuss 24169  CUnifSpccusp 24212  NrmRingcnrg 24495  NrmModcnlm 24496   ℝExt crrext 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-res 5631  df-iota 6442  df-fv 6494  df-rrext 34033
This theorem is referenced by:  rrhfe  34046  rrhcne  34047  sitgclg  34376
  Copyright terms: Public domain W3C validator