Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextcusp Structured version   Visualization version   GIF version

Theorem rrextcusp 33971
Description: An extension of is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextcusp (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp)

Proof of Theorem rrextcusp
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2729 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33966 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp3bi 1147 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))
65simpld 494 1 (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5621  cres 5625  cfv 6486  0cc0 11028  Basecbs 17138  distcds 17188  DivRingcdr 20632  metUnifcmetu 21270  ℤModczlm 21425  chrcchr 21426  UnifStcuss 24157  CUnifSpccusp 24200  NrmRingcnrg 24483  NrmModcnlm 24484   ℝExt crrext 33960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-res 5635  df-iota 6442  df-fv 6494  df-rrext 33965
This theorem is referenced by:  rrhfe  33978  rrhcne  33979  sitgclg  34309
  Copyright terms: Public domain W3C validator