Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextcusp Structured version   Visualization version   GIF version

Theorem rrextcusp 34013
Description: An extension of is a complete uniform space. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextcusp (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp)

Proof of Theorem rrextcusp
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2731 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2731 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 34008 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp3bi 1147 . 2 (𝑅 ∈ ℝExt → (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))
65simpld 494 1 (𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   × cxp 5614  cres 5618  cfv 6481  0cc0 11003  Basecbs 17117  distcds 17167  DivRingcdr 20642  metUnifcmetu 21280  ℤModczlm 21435  chrcchr 21436  UnifStcuss 24166  CUnifSpccusp 24209  NrmRingcnrg 24492  NrmModcnlm 24493   ℝExt crrext 34002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-res 5628  df-iota 6437  df-fv 6489  df-rrext 34007
This theorem is referenced by:  rrhfe  34020  rrhcne  34021  sitgclg  34350
  Copyright terms: Public domain W3C validator