Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 33441
Description: An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt β†’ 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 33436 . . 3 (𝑅 ∈ ℝExt β†’ 𝑅 ∈ NrmRing)
2 nrgngp 24500 . . 3 (𝑅 ∈ NrmRing β†’ 𝑅 ∈ NrmGrp)
3 ngpxms 24431 . . 3 (𝑅 ∈ NrmGrp β†’ 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . 2 (𝑅 ∈ ℝExt β†’ 𝑅 ∈ ∞MetSp)
5 xmstps 24280 . 2 (𝑅 ∈ ∞MetSp β†’ 𝑅 ∈ TopSp)
64, 5syl 17 1 (𝑅 ∈ ℝExt β†’ 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  TopSpctps 22755  βˆžMetSpcxms 24144  NrmGrpcngp 24407  NrmRingcnrg 24409   ℝExt crrext 33429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-co 5675  df-res 5678  df-iota 6485  df-fv 6541  df-xms 24147  df-ms 24148  df-ngp 24413  df-nrg 24415  df-rrext 33434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator