Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 33952
Description: An extension of is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 33947 . 2 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 24704 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 24635 . 2 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
4 xmstps 24484 . 2 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
51, 2, 3, 44syl 19 1 (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  TopSpctps 22959  ∞MetSpcxms 24348  NrmGrpcngp 24611  NrmRingcnrg 24613   ℝExt crrext 33940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-co 5709  df-res 5712  df-iota 6525  df-fv 6581  df-xms 24351  df-ms 24352  df-ngp 24617  df-nrg 24619  df-rrext 33945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator