Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 31965
Description: An extension of is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 31960 . . 3 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 23837 . . 3 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 23768 . . 3 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
41, 2, 33syl 18 . 2 (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp)
5 xmstps 23617 . 2 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
64, 5syl 17 1 (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  TopSpctps 22092  ∞MetSpcxms 23481  NrmGrpcngp 23744  NrmRingcnrg 23746   ℝExt crrext 31953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-xp 5596  df-co 5599  df-res 5602  df-iota 6390  df-fv 6440  df-xms 23484  df-ms 23485  df-ngp 23750  df-nrg 23752  df-rrext 31958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator