| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexttps | Structured version Visualization version GIF version | ||
| Description: An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| rrexttps | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextnrg 33999 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
| 2 | nrgngp 24556 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 3 | ngpxms 24495 | . 2 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
| 4 | xmstps 24347 | . 2 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
| 5 | 1, 2, 3, 4 | 4syl 19 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 TopSpctps 22825 ∞MetSpcxms 24211 NrmGrpcngp 24471 NrmRingcnrg 24473 ℝExt crrext 33992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-xp 5652 df-co 5655 df-res 5658 df-iota 6472 df-fv 6527 df-xms 24214 df-ms 24215 df-ngp 24477 df-nrg 24479 df-rrext 33997 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |