| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexttps | Structured version Visualization version GIF version | ||
| Description: An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| rrexttps | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrextnrg 33943 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
| 2 | nrgngp 24638 | . 2 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
| 3 | ngpxms 24577 | . 2 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
| 4 | xmstps 24427 | . 2 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
| 5 | 1, 2, 3, 4 | 4syl 19 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 TopSpctps 22905 ∞MetSpcxms 24291 NrmGrpcngp 24553 NrmRingcnrg 24555 ℝExt crrext 33936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-co 5676 df-res 5679 df-iota 6495 df-fv 6550 df-xms 24294 df-ms 24295 df-ngp 24559 df-nrg 24561 df-rrext 33941 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |