Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 33996
Description: An extension of is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 33991 . 2 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 24550 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 24489 . 2 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
4 xmstps 24341 . 2 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
51, 2, 3, 44syl 19 1 (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  TopSpctps 22819  ∞MetSpcxms 24205  NrmGrpcngp 24465  NrmRingcnrg 24467   ℝExt crrext 33984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-co 5647  df-res 5650  df-iota 6464  df-fv 6519  df-xms 24208  df-ms 24209  df-ngp 24471  df-nrg 24473  df-rrext 33989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator