Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexttps | Structured version Visualization version GIF version |
Description: An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
Ref | Expression |
---|---|
rrexttps | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg 31851 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
2 | nrgngp 23732 | . . 3 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
3 | ngpxms 23663 | . . 3 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp) |
5 | xmstps 23514 | . 2 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 TopSpctps 21989 ∞MetSpcxms 23378 NrmGrpcngp 23639 NrmRingcnrg 23641 ℝExt crrext 31844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-co 5589 df-res 5592 df-iota 6376 df-fv 6426 df-xms 23381 df-ms 23382 df-ngp 23645 df-nrg 23647 df-rrext 31849 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |