Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 33758
Description: An extension of is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 33753 . 2 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 24640 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 24571 . 2 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
4 xmstps 24420 . 2 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
51, 2, 3, 44syl 19 1 (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  TopSpctps 22895  ∞MetSpcxms 24284  NrmGrpcngp 24547  NrmRingcnrg 24549   ℝExt crrext 33746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-co 5687  df-res 5690  df-iota 6501  df-fv 6557  df-xms 24287  df-ms 24288  df-ngp 24553  df-nrg 24555  df-rrext 33751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator