![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexttps | Structured version Visualization version GIF version |
Description: An extension of β is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
Ref | Expression |
---|---|
rrexttps | β’ (π β βExt β π β TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg 33436 | . . 3 β’ (π β βExt β π β NrmRing) | |
2 | nrgngp 24500 | . . 3 β’ (π β NrmRing β π β NrmGrp) | |
3 | ngpxms 24431 | . . 3 β’ (π β NrmGrp β π β βMetSp) | |
4 | 1, 2, 3 | 3syl 18 | . 2 β’ (π β βExt β π β βMetSp) |
5 | xmstps 24280 | . 2 β’ (π β βMetSp β π β TopSp) | |
6 | 4, 5 | syl 17 | 1 β’ (π β βExt β π β TopSp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 TopSpctps 22755 βMetSpcxms 24144 NrmGrpcngp 24407 NrmRingcnrg 24409 βExt crrext 33429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-co 5675 df-res 5678 df-iota 6485 df-fv 6541 df-xms 24147 df-ms 24148 df-ngp 24413 df-nrg 24415 df-rrext 33434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |