Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrexttps Structured version   Visualization version   GIF version

Theorem rrexttps 33969
Description: An extension of is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.)
Assertion
Ref Expression
rrexttps (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)

Proof of Theorem rrexttps
StepHypRef Expression
1 rrextnrg 33964 . 2 (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing)
2 nrgngp 24699 . 2 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
3 ngpxms 24630 . 2 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
4 xmstps 24479 . 2 (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp)
51, 2, 3, 44syl 19 1 (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  TopSpctps 22954  ∞MetSpcxms 24343  NrmGrpcngp 24606  NrmRingcnrg 24608   ℝExt crrext 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-co 5698  df-res 5701  df-iota 6516  df-fv 6571  df-xms 24346  df-ms 24347  df-ngp 24612  df-nrg 24614  df-rrext 33962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator