Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexttps | Structured version Visualization version GIF version |
Description: An extension of ℝ is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
Ref | Expression |
---|---|
rrexttps | ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg 31960 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
2 | nrgngp 23837 | . . 3 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
3 | ngpxms 23768 | . . 3 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp) |
5 | xmstps 23617 | . 2 ⊢ (𝑅 ∈ ∞MetSp → 𝑅 ∈ TopSp) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 TopSpctps 22092 ∞MetSpcxms 23481 NrmGrpcngp 23744 NrmRingcnrg 23746 ℝExt crrext 31953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-xp 5596 df-co 5599 df-res 5602 df-iota 6390 df-fv 6440 df-xms 23484 df-ms 23485 df-ngp 23750 df-nrg 23752 df-rrext 31958 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |