Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextchr Structured version   Visualization version   GIF version

Theorem rrextchr 34005
Description: The ring characteristic of an extension of is zero. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextchr (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)

Proof of Theorem rrextchr
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2737 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2737 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 34001 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp2bi 1147 . 2 (𝑅 ∈ ℝExt → ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0))
65simprd 495 1 (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   × cxp 5683  cres 5687  cfv 6561  0cc0 11155  Basecbs 17247  distcds 17306  DivRingcdr 20729  metUnifcmetu 21355  ℤModczlm 21511  chrcchr 21512  UnifStcuss 24262  CUnifSpccusp 24306  NrmRingcnrg 24592  NrmModcnlm 24593   ℝExt crrext 33995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-res 5697  df-iota 6514  df-fv 6569  df-rrext 34000
This theorem is referenced by:  rrhfe  34013  rrhcne  34014  rrhqima  34015  rrh0  34016  sitgclg  34344
  Copyright terms: Public domain W3C validator