Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextchr Structured version   Visualization version   GIF version

Theorem rrextchr 33994
Description: The ring characteristic of an extension of is zero. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextchr (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)

Proof of Theorem rrextchr
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2729 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2729 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33990 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp2bi 1146 . 2 (𝑅 ∈ ℝExt → ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0))
65simprd 495 1 (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5636  cres 5640  cfv 6511  0cc0 11068  Basecbs 17179  distcds 17229  DivRingcdr 20638  metUnifcmetu 21255  ℤModczlm 21410  chrcchr 21411  UnifStcuss 24141  CUnifSpccusp 24184  NrmRingcnrg 24467  NrmModcnlm 24468   ℝExt crrext 33984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519  df-rrext 33989
This theorem is referenced by:  rrhfe  34002  rrhcne  34003  rrhqima  34004  rrh0  34005  sitgclg  34333
  Copyright terms: Public domain W3C validator