Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrextchr Structured version   Visualization version   GIF version

Theorem rrextchr 34000
Description: The ring characteristic of an extension of is zero. (Contributed by Thierry Arnoux, 2-May-2018.)
Assertion
Ref Expression
rrextchr (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)

Proof of Theorem rrextchr
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2730 . . . 4 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
3 eqid 2730 . . . 4 (ℤMod‘𝑅) = (ℤMod‘𝑅)
41, 2, 3isrrext 33996 . . 3 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))))))
54simp2bi 1146 . 2 (𝑅 ∈ ℝExt → ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0))
65simprd 495 1 (𝑅 ∈ ℝExt → (chr‘𝑅) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5638  cres 5642  cfv 6513  0cc0 11074  Basecbs 17185  distcds 17235  DivRingcdr 20644  metUnifcmetu 21261  ℤModczlm 21416  chrcchr 21417  UnifStcuss 24147  CUnifSpccusp 24190  NrmRingcnrg 24473  NrmModcnlm 24474   ℝExt crrext 33990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-res 5652  df-iota 6466  df-fv 6521  df-rrext 33995
This theorem is referenced by:  rrhfe  34008  rrhcne  34009  rrhqima  34010  rrh0  34011  sitgclg  34339
  Copyright terms: Public domain W3C validator