| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextchr | Structured version Visualization version GIF version | ||
| Description: The ring characteristic of an extension of ℝ is zero. (Contributed by Thierry Arnoux, 2-May-2018.) |
| Ref | Expression |
|---|---|
| rrextchr | ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 3 | eqid 2731 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
| 4 | 1, 2, 3 | isrrext 34008 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
| 5 | 4 | simp2bi 1146 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5614 ↾ cres 5618 ‘cfv 6481 0cc0 11003 Basecbs 17117 distcds 17167 DivRingcdr 20642 metUnifcmetu 21280 ℤModczlm 21435 chrcchr 21436 UnifStcuss 24166 CUnifSpccusp 24209 NrmRingcnrg 24492 NrmModcnlm 24493 ℝExt crrext 34002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-res 5628 df-iota 6437 df-fv 6489 df-rrext 34007 |
| This theorem is referenced by: rrhfe 34020 rrhcne 34021 rrhqima 34022 rrh0 34023 sitgclg 34350 |
| Copyright terms: Public domain | W3C validator |