![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextchr | Structured version Visualization version GIF version |
Description: The ring characteristic of an extension of ℝ is zero. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextchr | ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2736 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | eqid 2736 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 32189 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp2bi 1145 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
6 | 5 | simprd 496 | 1 ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 × cxp 5612 ↾ cres 5616 ‘cfv 6473 0cc0 10964 Basecbs 17001 distcds 17060 DivRingcdr 20085 metUnifcmetu 20686 ℤModczlm 20800 chrcchr 20801 UnifStcuss 23503 CUnifSpccusp 23547 NrmRingcnrg 23833 NrmModcnlm 23834 ℝExt crrext 32183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6425 df-fv 6481 df-rrext 32188 |
This theorem is referenced by: rrhfe 32201 rrhcne 32202 rrhqima 32203 rrh0 32204 sitgclg 32550 |
Copyright terms: Public domain | W3C validator |