Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrextchr | Structured version Visualization version GIF version |
Description: The ring characteristic of an extension of ℝ is zero. (Contributed by Thierry Arnoux, 2-May-2018.) |
Ref | Expression |
---|---|
rrextchr | ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
3 | eqid 2738 | . . . 4 ⊢ (ℤMod‘𝑅) = (ℤMod‘𝑅) | |
4 | 1, 2, 3 | isrrext 31950 | . . 3 ⊢ (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))))) |
5 | 4 | simp2bi 1145 | . 2 ⊢ (𝑅 ∈ ℝExt → ((ℤMod‘𝑅) ∈ NrmMod ∧ (chr‘𝑅) = 0)) |
6 | 5 | simprd 496 | 1 ⊢ (𝑅 ∈ ℝExt → (chr‘𝑅) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 × cxp 5587 ↾ cres 5591 ‘cfv 6433 0cc0 10871 Basecbs 16912 distcds 16971 DivRingcdr 19991 metUnifcmetu 20588 ℤModczlm 20702 chrcchr 20703 UnifStcuss 23405 CUnifSpccusp 23449 NrmRingcnrg 23735 NrmModcnlm 23736 ℝExt crrext 31944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-rrext 31949 |
This theorem is referenced by: rrhfe 31962 rrhcne 31963 rrhqima 31964 rrh0 31965 sitgclg 32309 |
Copyright terms: Public domain | W3C validator |