Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismntd | Structured version Visualization version GIF version |
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
ismntd.1 | ⊢ 𝐴 = (Base‘𝑉) |
ismntd.2 | ⊢ 𝐵 = (Base‘𝑊) |
ismntd.3 | ⊢ ≤ = (le‘𝑉) |
ismntd.4 | ⊢ ≲ = (le‘𝑊) |
ismntd.5 | ⊢ (𝜑 → 𝑉 ∈ 𝐶) |
ismntd.6 | ⊢ (𝜑 → 𝑊 ∈ 𝐷) |
ismntd.7 | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
ismntd.8 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ismntd.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
ismntd.10 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
Ref | Expression |
---|---|
ismntd | ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismntd.5 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐶) | |
2 | ismntd.6 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐷) | |
3 | ismntd.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | |
4 | ismntd.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | ismntd.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | ismntd.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | ismntd.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | ismnt 31163 | . . . . 5 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
9 | 8 | biimp3a 1467 | . . . 4 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
10 | 9 | simprd 495 | . . 3 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
11 | 1, 2, 3, 10 | syl3anc 1369 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
12 | ismntd.10 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
13 | breq1 5073 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
14 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
15 | 14 | breq1d 5080 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑦))) |
16 | 13, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)))) |
17 | breq2 5074 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
18 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
19 | 18 | breq2d 5082 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
20 | 17, 19 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
21 | ismntd.8 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
22 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐴 = 𝐴) | |
23 | ismntd.9 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
24 | 16, 20, 21, 22, 23 | rspc2vd 3879 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
25 | 11, 12, 24 | mp2d 49 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Monotcmnt 31158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-mnt 31160 |
This theorem is referenced by: mgcmntco 31174 mgcf1o 31183 |
Copyright terms: Public domain | W3C validator |