![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismntd | Structured version Visualization version GIF version |
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
ismntd.1 | ⊢ 𝐴 = (Base‘𝑉) |
ismntd.2 | ⊢ 𝐵 = (Base‘𝑊) |
ismntd.3 | ⊢ ≤ = (le‘𝑉) |
ismntd.4 | ⊢ ≲ = (le‘𝑊) |
ismntd.5 | ⊢ (𝜑 → 𝑉 ∈ 𝐶) |
ismntd.6 | ⊢ (𝜑 → 𝑊 ∈ 𝐷) |
ismntd.7 | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
ismntd.8 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ismntd.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
ismntd.10 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
Ref | Expression |
---|---|
ismntd | ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismntd.5 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐶) | |
2 | ismntd.6 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐷) | |
3 | ismntd.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | |
4 | ismntd.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | ismntd.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | ismntd.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | ismntd.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | ismnt 32956 | . . . . 5 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
9 | 8 | biimp3a 1469 | . . . 4 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
10 | 9 | simprd 495 | . . 3 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
11 | 1, 2, 3, 10 | syl3anc 1371 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
12 | ismntd.10 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
13 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
14 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
15 | 14 | breq1d 5176 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑦))) |
16 | 13, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)))) |
17 | breq2 5170 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
18 | fveq2 6920 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
19 | 18 | breq2d 5178 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
20 | 17, 19 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
21 | ismntd.8 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
22 | eqidd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐴 = 𝐴) | |
23 | ismntd.9 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
24 | 16, 20, 21, 22, 23 | rspc2vd 3972 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
25 | 11, 12, 24 | mp2d 49 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 Monotcmnt 32951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-mnt 32953 |
This theorem is referenced by: mgcmntco 32967 mgcf1o 32976 |
Copyright terms: Public domain | W3C validator |