Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntd Structured version   Visualization version   GIF version

Theorem ismntd 32956
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
ismntd.1 𝐴 = (Base‘𝑉)
ismntd.2 𝐵 = (Base‘𝑊)
ismntd.3 = (le‘𝑉)
ismntd.4 = (le‘𝑊)
ismntd.5 (𝜑𝑉𝐶)
ismntd.6 (𝜑𝑊𝐷)
ismntd.7 (𝜑𝐹 ∈ (𝑉Monot𝑊))
ismntd.8 (𝜑𝑋𝐴)
ismntd.9 (𝜑𝑌𝐴)
ismntd.10 (𝜑𝑋 𝑌)
Assertion
Ref Expression
ismntd (𝜑 → (𝐹𝑋) (𝐹𝑌))

Proof of Theorem ismntd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismntd.5 . . 3 (𝜑𝑉𝐶)
2 ismntd.6 . . 3 (𝜑𝑊𝐷)
3 ismntd.7 . . 3 (𝜑𝐹 ∈ (𝑉Monot𝑊))
4 ismntd.1 . . . . . 6 𝐴 = (Base‘𝑉)
5 ismntd.2 . . . . . 6 𝐵 = (Base‘𝑊)
6 ismntd.3 . . . . . 6 = (le‘𝑉)
7 ismntd.4 . . . . . 6 = (le‘𝑊)
84, 5, 6, 7ismnt 32955 . . . . 5 ((𝑉𝐶𝑊𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
98biimp3a 1471 . . . 4 ((𝑉𝐶𝑊𝐷𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
109simprd 495 . . 3 ((𝑉𝐶𝑊𝐷𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
111, 2, 3, 10syl3anc 1373 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
12 ismntd.10 . 2 (𝜑𝑋 𝑌)
13 breq1 5105 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
14 fveq2 6840 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1514breq1d 5112 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑦)))
1613, 15imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑋 𝑦 → (𝐹𝑋) (𝐹𝑦))))
17 breq2 5106 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 fveq2 6840 . . . . 5 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1918breq2d 5114 . . . 4 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑌)))
2017, 19imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦 → (𝐹𝑋) (𝐹𝑦)) ↔ (𝑋 𝑌 → (𝐹𝑋) (𝐹𝑌))))
21 ismntd.8 . . 3 (𝜑𝑋𝐴)
22 eqidd 2730 . . 3 ((𝜑𝑥 = 𝑋) → 𝐴 = 𝐴)
23 ismntd.9 . . 3 (𝜑𝑌𝐴)
2416, 20, 21, 22, 23rspc2vd 3907 . 2 (𝜑 → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑋 𝑌 → (𝐹𝑋) (𝐹𝑌))))
2511, 12, 24mp2d 49 1 (𝜑 → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  Monotcmnt 32950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-mnt 32952
This theorem is referenced by:  mgcmntco  32966  mgcf1o  32975
  Copyright terms: Public domain W3C validator