Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntd Structured version   Visualization version   GIF version

Theorem ismntd 32959
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
ismntd.1 𝐴 = (Base‘𝑉)
ismntd.2 𝐵 = (Base‘𝑊)
ismntd.3 = (le‘𝑉)
ismntd.4 = (le‘𝑊)
ismntd.5 (𝜑𝑉𝐶)
ismntd.6 (𝜑𝑊𝐷)
ismntd.7 (𝜑𝐹 ∈ (𝑉Monot𝑊))
ismntd.8 (𝜑𝑋𝐴)
ismntd.9 (𝜑𝑌𝐴)
ismntd.10 (𝜑𝑋 𝑌)
Assertion
Ref Expression
ismntd (𝜑 → (𝐹𝑋) (𝐹𝑌))

Proof of Theorem ismntd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismntd.5 . . 3 (𝜑𝑉𝐶)
2 ismntd.6 . . 3 (𝜑𝑊𝐷)
3 ismntd.7 . . 3 (𝜑𝐹 ∈ (𝑉Monot𝑊))
4 ismntd.1 . . . . . 6 𝐴 = (Base‘𝑉)
5 ismntd.2 . . . . . 6 𝐵 = (Base‘𝑊)
6 ismntd.3 . . . . . 6 = (le‘𝑉)
7 ismntd.4 . . . . . 6 = (le‘𝑊)
84, 5, 6, 7ismnt 32958 . . . . 5 ((𝑉𝐶𝑊𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
98biimp3a 1468 . . . 4 ((𝑉𝐶𝑊𝐷𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
109simprd 495 . . 3 ((𝑉𝐶𝑊𝐷𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
111, 2, 3, 10syl3anc 1370 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
12 ismntd.10 . 2 (𝜑𝑋 𝑌)
13 breq1 5151 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
14 fveq2 6907 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1514breq1d 5158 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑦)))
1613, 15imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑋 𝑦 → (𝐹𝑋) (𝐹𝑦))))
17 breq2 5152 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 fveq2 6907 . . . . 5 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1918breq2d 5160 . . . 4 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑌)))
2017, 19imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦 → (𝐹𝑋) (𝐹𝑦)) ↔ (𝑋 𝑌 → (𝐹𝑋) (𝐹𝑌))))
21 ismntd.8 . . 3 (𝜑𝑋𝐴)
22 eqidd 2736 . . 3 ((𝜑𝑥 = 𝑋) → 𝐴 = 𝐴)
23 ismntd.9 . . 3 (𝜑𝑌𝐴)
2416, 20, 21, 22, 23rspc2vd 3959 . 2 (𝜑 → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑋 𝑌 → (𝐹𝑋) (𝐹𝑌))))
2511, 12, 24mp2d 49 1 (𝜑 → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  Monotcmnt 32953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-mnt 32955
This theorem is referenced by:  mgcmntco  32969  mgcf1o  32978
  Copyright terms: Public domain W3C validator