| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismntd | Structured version Visualization version GIF version | ||
| Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| ismntd.1 | ⊢ 𝐴 = (Base‘𝑉) |
| ismntd.2 | ⊢ 𝐵 = (Base‘𝑊) |
| ismntd.3 | ⊢ ≤ = (le‘𝑉) |
| ismntd.4 | ⊢ ≲ = (le‘𝑊) |
| ismntd.5 | ⊢ (𝜑 → 𝑉 ∈ 𝐶) |
| ismntd.6 | ⊢ (𝜑 → 𝑊 ∈ 𝐷) |
| ismntd.7 | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
| ismntd.8 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ismntd.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| ismntd.10 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| Ref | Expression |
|---|---|
| ismntd | ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismntd.5 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐶) | |
| 2 | ismntd.6 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐷) | |
| 3 | ismntd.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | |
| 4 | ismntd.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
| 5 | ismntd.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | ismntd.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
| 7 | ismntd.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
| 8 | 4, 5, 6, 7 | ismnt 32915 | . . . . 5 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
| 9 | 8 | biimp3a 1471 | . . . 4 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
| 10 | 9 | simprd 495 | . . 3 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
| 11 | 1, 2, 3, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
| 12 | ismntd.10 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 13 | breq1 5112 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
| 14 | fveq2 6860 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 15 | 14 | breq1d 5119 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑦))) |
| 16 | 13, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)))) |
| 17 | breq2 5113 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
| 18 | fveq2 6860 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 19 | 18 | breq2d 5121 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
| 20 | 17, 19 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
| 21 | ismntd.8 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 22 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐴 = 𝐴) | |
| 23 | ismntd.9 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 24 | 16, 20, 21, 22, 23 | rspc2vd 3912 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
| 25 | 11, 12, 24 | mp2d 49 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5109 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 lecple 17233 Monotcmnt 32910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-mnt 32912 |
| This theorem is referenced by: mgcmntco 32926 mgcf1o 32935 |
| Copyright terms: Public domain | W3C validator |