Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismntd Structured version   Visualization version   GIF version

Theorem ismntd 32965
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
ismntd.1 𝐴 = (Base‘𝑉)
ismntd.2 𝐵 = (Base‘𝑊)
ismntd.3 = (le‘𝑉)
ismntd.4 = (le‘𝑊)
ismntd.5 (𝜑𝑉𝐶)
ismntd.6 (𝜑𝑊𝐷)
ismntd.7 (𝜑𝐹 ∈ (𝑉Monot𝑊))
ismntd.8 (𝜑𝑋𝐴)
ismntd.9 (𝜑𝑌𝐴)
ismntd.10 (𝜑𝑋 𝑌)
Assertion
Ref Expression
ismntd (𝜑 → (𝐹𝑋) (𝐹𝑌))

Proof of Theorem ismntd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismntd.5 . . 3 (𝜑𝑉𝐶)
2 ismntd.6 . . 3 (𝜑𝑊𝐷)
3 ismntd.7 . . 3 (𝜑𝐹 ∈ (𝑉Monot𝑊))
4 ismntd.1 . . . . . 6 𝐴 = (Base‘𝑉)
5 ismntd.2 . . . . . 6 𝐵 = (Base‘𝑊)
6 ismntd.3 . . . . . 6 = (le‘𝑉)
7 ismntd.4 . . . . . 6 = (le‘𝑊)
84, 5, 6, 7ismnt 32964 . . . . 5 ((𝑉𝐶𝑊𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
98biimp3a 1471 . . . 4 ((𝑉𝐶𝑊𝐷𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
109simprd 495 . . 3 ((𝑉𝐶𝑊𝐷𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
111, 2, 3, 10syl3anc 1373 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
12 ismntd.10 . 2 (𝜑𝑋 𝑌)
13 breq1 5092 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
14 fveq2 6822 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1514breq1d 5099 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑦)))
1613, 15imbi12d 344 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑋 𝑦 → (𝐹𝑋) (𝐹𝑦))))
17 breq2 5093 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
18 fveq2 6822 . . . . 5 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1918breq2d 5101 . . . 4 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑌)))
2017, 19imbi12d 344 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦 → (𝐹𝑋) (𝐹𝑦)) ↔ (𝑋 𝑌 → (𝐹𝑋) (𝐹𝑌))))
21 ismntd.8 . . 3 (𝜑𝑋𝐴)
22 eqidd 2732 . . 3 ((𝜑𝑥 = 𝑋) → 𝐴 = 𝐴)
23 ismntd.9 . . 3 (𝜑𝑌𝐴)
2416, 20, 21, 22, 23rspc2vd 3893 . 2 (𝜑 → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑋 𝑌 → (𝐹𝑋) (𝐹𝑌))))
2511, 12, 24mp2d 49 1 (𝜑 → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  Monotcmnt 32959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-mnt 32961
This theorem is referenced by:  mgcmntco  32975  mgcf1o  32984
  Copyright terms: Public domain W3C validator