Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismntd | Structured version Visualization version GIF version |
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
ismntd.1 | ⊢ 𝐴 = (Base‘𝑉) |
ismntd.2 | ⊢ 𝐵 = (Base‘𝑊) |
ismntd.3 | ⊢ ≤ = (le‘𝑉) |
ismntd.4 | ⊢ ≲ = (le‘𝑊) |
ismntd.5 | ⊢ (𝜑 → 𝑉 ∈ 𝐶) |
ismntd.6 | ⊢ (𝜑 → 𝑊 ∈ 𝐷) |
ismntd.7 | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
ismntd.8 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ismntd.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
ismntd.10 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
Ref | Expression |
---|---|
ismntd | ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismntd.5 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐶) | |
2 | ismntd.6 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐷) | |
3 | ismntd.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | |
4 | ismntd.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | ismntd.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | ismntd.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | ismntd.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | ismnt 30980 | . . . . 5 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
9 | 8 | biimp3a 1471 | . . . 4 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
10 | 9 | simprd 499 | . . 3 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
11 | 1, 2, 3, 10 | syl3anc 1373 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
12 | ismntd.10 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
13 | breq1 5056 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
14 | fveq2 6717 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
15 | 14 | breq1d 5063 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑦))) |
16 | 13, 15 | imbi12d 348 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)))) |
17 | breq2 5057 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
18 | fveq2 6717 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
19 | 18 | breq2d 5065 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
20 | 17, 19 | imbi12d 348 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
21 | ismntd.8 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
22 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐴 = 𝐴) | |
23 | ismntd.9 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
24 | 16, 20, 21, 22, 23 | rspc2vd 3862 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
25 | 11, 12, 24 | mp2d 49 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 class class class wbr 5053 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 lecple 16809 Monotcmnt 30975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-mnt 30977 |
This theorem is referenced by: mgcmntco 30991 mgcf1o 31000 |
Copyright terms: Public domain | W3C validator |