![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismntd | Structured version Visualization version GIF version |
Description: Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
ismntd.1 | ⊢ 𝐴 = (Base‘𝑉) |
ismntd.2 | ⊢ 𝐵 = (Base‘𝑊) |
ismntd.3 | ⊢ ≤ = (le‘𝑉) |
ismntd.4 | ⊢ ≲ = (le‘𝑊) |
ismntd.5 | ⊢ (𝜑 → 𝑉 ∈ 𝐶) |
ismntd.6 | ⊢ (𝜑 → 𝑊 ∈ 𝐷) |
ismntd.7 | ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) |
ismntd.8 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
ismntd.9 | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
ismntd.10 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
Ref | Expression |
---|---|
ismntd | ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismntd.5 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐶) | |
2 | ismntd.6 | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐷) | |
3 | ismntd.7 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | |
4 | ismntd.1 | . . . . . 6 ⊢ 𝐴 = (Base‘𝑉) | |
5 | ismntd.2 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | ismntd.3 | . . . . . 6 ⊢ ≤ = (le‘𝑉) | |
7 | ismntd.4 | . . . . . 6 ⊢ ≲ = (le‘𝑊) | |
8 | 4, 5, 6, 7 | ismnt 32958 | . . . . 5 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
9 | 8 | biimp3a 1468 | . . . 4 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
10 | 9 | simprd 495 | . . 3 ⊢ ((𝑉 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
11 | 1, 2, 3, 10 | syl3anc 1370 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
12 | ismntd.10 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
13 | breq1 5151 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
14 | fveq2 6907 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
15 | 14 | breq1d 5158 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑦))) |
16 | 13, 15 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)))) |
17 | breq2 5152 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
18 | fveq2 6907 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
19 | 18 | breq2d 5160 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≲ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
20 | 17, 19 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 → (𝐹‘𝑋) ≲ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
21 | ismntd.8 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
22 | eqidd 2736 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝐴 = 𝐴) | |
23 | ismntd.9 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
24 | 16, 20, 21, 22, 23 | rspc2vd 3959 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)))) |
25 | 11, 12, 24 | mp2d 49 | 1 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 Monotcmnt 32953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-mnt 32955 |
This theorem is referenced by: mgcmntco 32969 mgcf1o 32978 |
Copyright terms: Public domain | W3C validator |