Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2lem Structured version   Visualization version   GIF version

Theorem dfmgc2lem 32937
Description: Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
dfmgc2lem.1 (𝜑𝐹:𝐴𝐵)
dfmgc2lem.2 (𝜑𝐺:𝐵𝐴)
dfmgc2lem.3 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
dfmgc2lem.4 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
dfmgc2lem.5 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
dfmgc2lem.6 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
Assertion
Ref Expression
dfmgc2lem (𝜑𝐹𝐻𝐺)
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐴   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfmgc2lem.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 dfmgc2lem.2 . . 3 (𝜑𝐺:𝐵𝐴)
31, 2jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
54ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑉 ∈ Proset )
6 simplr 768 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑧𝐴)
76adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧𝐴)
82ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐺:𝐵𝐴)
91ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐹:𝐴𝐵)
109, 7ffvelcdmd 7019 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐹𝑧) ∈ 𝐵)
118, 10ffvelcdmd 7019 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) ∈ 𝐴)
122ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝐺:𝐵𝐴)
13 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑤𝐵)
1412, 13ffvelcdmd 7019 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐺𝑤) ∈ 𝐴)
1514adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺𝑤) ∈ 𝐴)
16 dfmgc2lem.5 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
1716ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
1817ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
19 simpr 484 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
2019fveq2d 6826 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐹𝑥) = (𝐹𝑧))
2120fveq2d 6826 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑧)))
2219, 21breq12d 5105 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑧 (𝐺‘(𝐹𝑧))))
237, 22rspcdv 3569 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)) → 𝑧 (𝐺‘(𝐹𝑧))))
2418, 23mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺‘(𝐹𝑧)))
25 dfmgc2lem.4 . . . . . . . . 9 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2625ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
27 breq1 5095 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢 𝑣 ↔ (𝐹𝑧) 𝑣))
28 fveq2 6822 . . . . . . . . . . 11 (𝑢 = (𝐹𝑧) → (𝐺𝑢) = (𝐺‘(𝐹𝑧)))
2928breq1d 5102 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑣)))
3027, 29imbi12d 344 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣))))
31 breq2 5096 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐹𝑧) 𝑣 ↔ (𝐹𝑧) 𝑤))
32 fveq2 6822 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
3332breq2d 5104 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐺‘(𝐹𝑧)) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
3431, 33imbi12d 344 . . . . . . . . 9 (𝑣 = 𝑤 → (((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
351ffvelcdmda 7018 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3635adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐹𝑧) ∈ 𝐵)
37 eqidd 2730 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑢 = (𝐹𝑧)) → 𝐵 = 𝐵)
3830, 34, 36, 37, 13rspc2vd 3899 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
3926, 38mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
4039imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) (𝐺𝑤))
41 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
42 mgcoval.3 . . . . . . 7 = (le‘𝑉)
4341, 42prstr 18205 . . . . . 6 ((𝑉 ∈ Proset ∧ (𝑧𝐴 ∧ (𝐺‘(𝐹𝑧)) ∈ 𝐴 ∧ (𝐺𝑤) ∈ 𝐴) ∧ (𝑧 (𝐺‘(𝐹𝑧)) ∧ (𝐺‘(𝐹𝑧)) (𝐺𝑤))) → 𝑧 (𝐺𝑤))
445, 7, 11, 15, 24, 40, 43syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺𝑤))
45 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
4645ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑊 ∈ Proset )
4735ad2antrr 726 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) ∈ 𝐵)
481ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝐹:𝐴𝐵)
4914adantr 480 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐺𝑤) ∈ 𝐴)
5048, 49ffvelcdmd 7019 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) ∈ 𝐵)
51 simplr 768 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑤𝐵)
52 dfmgc2lem.3 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
5352ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
54 breq1 5095 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 𝑦𝑧 𝑦))
55 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5655breq1d 5102 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹𝑦)))
5754, 56imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦))))
58 breq2 5096 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → (𝑧 𝑦𝑧 (𝐺𝑤)))
59 fveq2 6822 . . . . . . . . . . 11 (𝑦 = (𝐺𝑤) → (𝐹𝑦) = (𝐹‘(𝐺𝑤)))
6059breq2d 5104 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → ((𝐹𝑧) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦)) ↔ (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
62 eqidd 2730 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑥 = 𝑧) → 𝐴 = 𝐴)
6357, 61, 6, 62, 14rspc2vd 3899 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
6453, 63mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6564imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))
66 dfmgc2lem.6 . . . . . . . . 9 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
6766ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
6867ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
69 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → 𝑢 = 𝑤)
7069fveq2d 6826 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐺𝑢) = (𝐺𝑤))
7170fveq2d 6826 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑤)))
7271, 69breq12d 5105 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑤)) 𝑤))
7351, 72rspcdv 3569 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 → (𝐹‘(𝐺𝑤)) 𝑤))
7468, 73mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) 𝑤)
75 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
76 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7775, 76prstr 18205 . . . . . 6 ((𝑊 ∈ Proset ∧ ((𝐹𝑧) ∈ 𝐵 ∧ (𝐹‘(𝐺𝑤)) ∈ 𝐵𝑤𝐵) ∧ ((𝐹𝑧) (𝐹‘(𝐺𝑤)) ∧ (𝐹‘(𝐺𝑤)) 𝑤)) → (𝐹𝑧) 𝑤)
7846, 47, 50, 51, 65, 74, 77syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) 𝑤)
7944, 78impbida 800 . . . 4 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8079anasss 466 . . 3 ((𝜑 ∧ (𝑧𝐴𝑤𝐵)) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8180ralrimivva 3172 . 2 (𝜑 → ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
82 mgcval.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8341, 75, 42, 76, 82, 4, 45mgcval 32929 . 2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))))
843, 81, 83mpbir2and 713 1 (𝜑𝐹𝐻𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168   Proset cproset 18198  MGalConncmgc 32921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-proset 18200  df-mgc 32923
This theorem is referenced by:  dfmgc2  32938
  Copyright terms: Public domain W3C validator