Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2lem Structured version   Visualization version   GIF version

Theorem dfmgc2lem 32976
Description: Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
dfmgc2lem.1 (𝜑𝐹:𝐴𝐵)
dfmgc2lem.2 (𝜑𝐺:𝐵𝐴)
dfmgc2lem.3 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
dfmgc2lem.4 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
dfmgc2lem.5 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
dfmgc2lem.6 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
Assertion
Ref Expression
dfmgc2lem (𝜑𝐹𝐻𝐺)
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐴   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfmgc2lem.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 dfmgc2lem.2 . . 3 (𝜑𝐺:𝐵𝐴)
31, 2jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
54ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑉 ∈ Proset )
6 simplr 768 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑧𝐴)
76adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧𝐴)
82ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐺:𝐵𝐴)
91ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐹:𝐴𝐵)
109, 7ffvelcdmd 7018 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐹𝑧) ∈ 𝐵)
118, 10ffvelcdmd 7018 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) ∈ 𝐴)
122ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝐺:𝐵𝐴)
13 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑤𝐵)
1412, 13ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐺𝑤) ∈ 𝐴)
1514adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺𝑤) ∈ 𝐴)
16 dfmgc2lem.5 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
1716ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
1817ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
19 simpr 484 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
2019fveq2d 6826 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐹𝑥) = (𝐹𝑧))
2120fveq2d 6826 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑧)))
2219, 21breq12d 5102 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑧 (𝐺‘(𝐹𝑧))))
237, 22rspcdv 3564 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)) → 𝑧 (𝐺‘(𝐹𝑧))))
2418, 23mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺‘(𝐹𝑧)))
25 dfmgc2lem.4 . . . . . . . . 9 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2625ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
27 breq1 5092 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢 𝑣 ↔ (𝐹𝑧) 𝑣))
28 fveq2 6822 . . . . . . . . . . 11 (𝑢 = (𝐹𝑧) → (𝐺𝑢) = (𝐺‘(𝐹𝑧)))
2928breq1d 5099 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑣)))
3027, 29imbi12d 344 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣))))
31 breq2 5093 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐹𝑧) 𝑣 ↔ (𝐹𝑧) 𝑤))
32 fveq2 6822 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
3332breq2d 5101 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐺‘(𝐹𝑧)) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
3431, 33imbi12d 344 . . . . . . . . 9 (𝑣 = 𝑤 → (((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
351ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3635adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐹𝑧) ∈ 𝐵)
37 eqidd 2732 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑢 = (𝐹𝑧)) → 𝐵 = 𝐵)
3830, 34, 36, 37, 13rspc2vd 3893 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
3926, 38mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
4039imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) (𝐺𝑤))
41 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
42 mgcoval.3 . . . . . . 7 = (le‘𝑉)
4341, 42prstr 18205 . . . . . 6 ((𝑉 ∈ Proset ∧ (𝑧𝐴 ∧ (𝐺‘(𝐹𝑧)) ∈ 𝐴 ∧ (𝐺𝑤) ∈ 𝐴) ∧ (𝑧 (𝐺‘(𝐹𝑧)) ∧ (𝐺‘(𝐹𝑧)) (𝐺𝑤))) → 𝑧 (𝐺𝑤))
445, 7, 11, 15, 24, 40, 43syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺𝑤))
45 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
4645ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑊 ∈ Proset )
4735ad2antrr 726 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) ∈ 𝐵)
481ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝐹:𝐴𝐵)
4914adantr 480 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐺𝑤) ∈ 𝐴)
5048, 49ffvelcdmd 7018 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) ∈ 𝐵)
51 simplr 768 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑤𝐵)
52 dfmgc2lem.3 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
5352ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
54 breq1 5092 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 𝑦𝑧 𝑦))
55 fveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5655breq1d 5099 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹𝑦)))
5754, 56imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦))))
58 breq2 5093 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → (𝑧 𝑦𝑧 (𝐺𝑤)))
59 fveq2 6822 . . . . . . . . . . 11 (𝑦 = (𝐺𝑤) → (𝐹𝑦) = (𝐹‘(𝐺𝑤)))
6059breq2d 5101 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → ((𝐹𝑧) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦)) ↔ (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
62 eqidd 2732 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑥 = 𝑧) → 𝐴 = 𝐴)
6357, 61, 6, 62, 14rspc2vd 3893 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
6453, 63mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6564imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))
66 dfmgc2lem.6 . . . . . . . . 9 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
6766ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
6867ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
69 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → 𝑢 = 𝑤)
7069fveq2d 6826 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐺𝑢) = (𝐺𝑤))
7170fveq2d 6826 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑤)))
7271, 69breq12d 5102 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑤)) 𝑤))
7351, 72rspcdv 3564 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 → (𝐹‘(𝐺𝑤)) 𝑤))
7468, 73mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) 𝑤)
75 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
76 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7775, 76prstr 18205 . . . . . 6 ((𝑊 ∈ Proset ∧ ((𝐹𝑧) ∈ 𝐵 ∧ (𝐹‘(𝐺𝑤)) ∈ 𝐵𝑤𝐵) ∧ ((𝐹𝑧) (𝐹‘(𝐺𝑤)) ∧ (𝐹‘(𝐺𝑤)) 𝑤)) → (𝐹𝑧) 𝑤)
7846, 47, 50, 51, 65, 74, 77syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) 𝑤)
7944, 78impbida 800 . . . 4 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8079anasss 466 . . 3 ((𝜑 ∧ (𝑧𝐴𝑤𝐵)) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8180ralrimivva 3175 . 2 (𝜑 → ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
82 mgcval.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8341, 75, 42, 76, 82, 4, 45mgcval 32968 . 2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))))
843, 81, 83mpbir2and 713 1 (𝜑𝐹𝐻𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168   Proset cproset 18198  MGalConncmgc 32960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-mgc 32962
This theorem is referenced by:  dfmgc2  32977
  Copyright terms: Public domain W3C validator