Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2lem Structured version   Visualization version   GIF version

Theorem dfmgc2lem 32967
Description: Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
dfmgc2lem.1 (𝜑𝐹:𝐴𝐵)
dfmgc2lem.2 (𝜑𝐺:𝐵𝐴)
dfmgc2lem.3 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
dfmgc2lem.4 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
dfmgc2lem.5 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
dfmgc2lem.6 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
Assertion
Ref Expression
dfmgc2lem (𝜑𝐹𝐻𝐺)
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐴   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfmgc2lem.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 dfmgc2lem.2 . . 3 (𝜑𝐺:𝐵𝐴)
31, 2jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
54ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑉 ∈ Proset )
6 simplr 768 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑧𝐴)
76adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧𝐴)
82ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐺:𝐵𝐴)
91ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐹:𝐴𝐵)
109, 7ffvelcdmd 7039 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐹𝑧) ∈ 𝐵)
118, 10ffvelcdmd 7039 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) ∈ 𝐴)
122ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝐺:𝐵𝐴)
13 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑤𝐵)
1412, 13ffvelcdmd 7039 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐺𝑤) ∈ 𝐴)
1514adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺𝑤) ∈ 𝐴)
16 dfmgc2lem.5 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
1716ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
1817ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
19 simpr 484 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
2019fveq2d 6844 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐹𝑥) = (𝐹𝑧))
2120fveq2d 6844 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑧)))
2219, 21breq12d 5115 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑧 (𝐺‘(𝐹𝑧))))
237, 22rspcdv 3577 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)) → 𝑧 (𝐺‘(𝐹𝑧))))
2418, 23mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺‘(𝐹𝑧)))
25 dfmgc2lem.4 . . . . . . . . 9 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2625ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
27 breq1 5105 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢 𝑣 ↔ (𝐹𝑧) 𝑣))
28 fveq2 6840 . . . . . . . . . . 11 (𝑢 = (𝐹𝑧) → (𝐺𝑢) = (𝐺‘(𝐹𝑧)))
2928breq1d 5112 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑣)))
3027, 29imbi12d 344 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣))))
31 breq2 5106 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐹𝑧) 𝑣 ↔ (𝐹𝑧) 𝑤))
32 fveq2 6840 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
3332breq2d 5114 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐺‘(𝐹𝑧)) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
3431, 33imbi12d 344 . . . . . . . . 9 (𝑣 = 𝑤 → (((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
351ffvelcdmda 7038 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3635adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐹𝑧) ∈ 𝐵)
37 eqidd 2730 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑢 = (𝐹𝑧)) → 𝐵 = 𝐵)
3830, 34, 36, 37, 13rspc2vd 3907 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
3926, 38mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
4039imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) (𝐺𝑤))
41 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
42 mgcoval.3 . . . . . . 7 = (le‘𝑉)
4341, 42prstr 18240 . . . . . 6 ((𝑉 ∈ Proset ∧ (𝑧𝐴 ∧ (𝐺‘(𝐹𝑧)) ∈ 𝐴 ∧ (𝐺𝑤) ∈ 𝐴) ∧ (𝑧 (𝐺‘(𝐹𝑧)) ∧ (𝐺‘(𝐹𝑧)) (𝐺𝑤))) → 𝑧 (𝐺𝑤))
445, 7, 11, 15, 24, 40, 43syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺𝑤))
45 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
4645ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑊 ∈ Proset )
4735ad2antrr 726 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) ∈ 𝐵)
481ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝐹:𝐴𝐵)
4914adantr 480 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐺𝑤) ∈ 𝐴)
5048, 49ffvelcdmd 7039 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) ∈ 𝐵)
51 simplr 768 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑤𝐵)
52 dfmgc2lem.3 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
5352ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
54 breq1 5105 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 𝑦𝑧 𝑦))
55 fveq2 6840 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5655breq1d 5112 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹𝑦)))
5754, 56imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦))))
58 breq2 5106 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → (𝑧 𝑦𝑧 (𝐺𝑤)))
59 fveq2 6840 . . . . . . . . . . 11 (𝑦 = (𝐺𝑤) → (𝐹𝑦) = (𝐹‘(𝐺𝑤)))
6059breq2d 5114 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → ((𝐹𝑧) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦)) ↔ (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
62 eqidd 2730 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑥 = 𝑧) → 𝐴 = 𝐴)
6357, 61, 6, 62, 14rspc2vd 3907 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
6453, 63mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6564imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))
66 dfmgc2lem.6 . . . . . . . . 9 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
6766ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
6867ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
69 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → 𝑢 = 𝑤)
7069fveq2d 6844 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐺𝑢) = (𝐺𝑤))
7170fveq2d 6844 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑤)))
7271, 69breq12d 5115 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑤)) 𝑤))
7351, 72rspcdv 3577 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 → (𝐹‘(𝐺𝑤)) 𝑤))
7468, 73mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) 𝑤)
75 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
76 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7775, 76prstr 18240 . . . . . 6 ((𝑊 ∈ Proset ∧ ((𝐹𝑧) ∈ 𝐵 ∧ (𝐹‘(𝐺𝑤)) ∈ 𝐵𝑤𝐵) ∧ ((𝐹𝑧) (𝐹‘(𝐺𝑤)) ∧ (𝐹‘(𝐺𝑤)) 𝑤)) → (𝐹𝑧) 𝑤)
7846, 47, 50, 51, 65, 74, 77syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) 𝑤)
7944, 78impbida 800 . . . 4 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8079anasss 466 . . 3 ((𝜑 ∧ (𝑧𝐴𝑤𝐵)) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8180ralrimivva 3178 . 2 (𝜑 → ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
82 mgcval.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8341, 75, 42, 76, 82, 4, 45mgcval 32959 . 2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))))
843, 81, 83mpbir2and 713 1 (𝜑𝐹𝐻𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203   Proset cproset 18233  MGalConncmgc 32951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18235  df-mgc 32953
This theorem is referenced by:  dfmgc2  32968
  Copyright terms: Public domain W3C validator