Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfmgc2lem Structured version   Visualization version   GIF version

Theorem dfmgc2lem 32980
Description: Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
dfmgc2lem.1 (𝜑𝐹:𝐴𝐵)
dfmgc2lem.2 (𝜑𝐺:𝐵𝐴)
dfmgc2lem.3 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
dfmgc2lem.4 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
dfmgc2lem.5 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
dfmgc2lem.6 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
Assertion
Ref Expression
dfmgc2lem (𝜑𝐹𝐻𝐺)
Distinct variable groups:   𝑣,   𝑣,   𝑣,𝐴,𝑥,𝑦   𝑣,𝐵,𝑥,𝑦   𝑣,𝑉,𝑥,𝑦   𝑣,𝑊,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑢, ,𝑣   𝑥, ,𝑦   𝑢,   𝑥, ,𝑦   𝑢,𝐴   𝑢,𝐵   𝑢,𝐹,𝑣   𝑢,𝐺,𝑣   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐻(𝑥,𝑦,𝑣,𝑢)   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem dfmgc2lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfmgc2lem.1 . . 3 (𝜑𝐹:𝐴𝐵)
2 dfmgc2lem.2 . . 3 (𝜑𝐺:𝐵𝐴)
31, 2jca 511 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐵𝐴))
4 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
54ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑉 ∈ Proset )
6 simplr 768 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑧𝐴)
76adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧𝐴)
82ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐺:𝐵𝐴)
91ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝐹:𝐴𝐵)
109, 7ffvelcdmd 7080 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐹𝑧) ∈ 𝐵)
118, 10ffvelcdmd 7080 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) ∈ 𝐴)
122ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝐺:𝐵𝐴)
13 simpr 484 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → 𝑤𝐵)
1412, 13ffvelcdmd 7080 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐺𝑤) ∈ 𝐴)
1514adantr 480 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺𝑤) ∈ 𝐴)
16 dfmgc2lem.5 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
1716ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
1817ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))
19 simpr 484 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
2019fveq2d 6885 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐹𝑥) = (𝐹𝑧))
2120fveq2d 6885 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝐺‘(𝐹𝑥)) = (𝐺‘(𝐹𝑧)))
2219, 21breq12d 5137 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) ∧ 𝑥 = 𝑧) → (𝑥 (𝐺‘(𝐹𝑥)) ↔ 𝑧 (𝐺‘(𝐹𝑧))))
237, 22rspcdv 3598 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)) → 𝑧 (𝐺‘(𝐹𝑧))))
2418, 23mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺‘(𝐹𝑧)))
25 dfmgc2lem.4 . . . . . . . . 9 (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
2625ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))
27 breq1 5127 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢 𝑣 ↔ (𝐹𝑧) 𝑣))
28 fveq2 6881 . . . . . . . . . . 11 (𝑢 = (𝐹𝑧) → (𝐺𝑢) = (𝐺‘(𝐹𝑧)))
2928breq1d 5134 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → ((𝐺𝑢) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑣)))
3027, 29imbi12d 344 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣))))
31 breq2 5128 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐹𝑧) 𝑣 ↔ (𝐹𝑧) 𝑤))
32 fveq2 6881 . . . . . . . . . . 11 (𝑣 = 𝑤 → (𝐺𝑣) = (𝐺𝑤))
3332breq2d 5136 . . . . . . . . . 10 (𝑣 = 𝑤 → ((𝐺‘(𝐹𝑧)) (𝐺𝑣) ↔ (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
3431, 33imbi12d 344 . . . . . . . . 9 (𝑣 = 𝑤 → (((𝐹𝑧) 𝑣 → (𝐺‘(𝐹𝑧)) (𝐺𝑣)) ↔ ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
351ffvelcdmda 7079 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3635adantr 480 . . . . . . . . 9 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝐹𝑧) ∈ 𝐵)
37 eqidd 2737 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑢 = (𝐹𝑧)) → 𝐵 = 𝐵)
3830, 34, 36, 37, 13rspc2vd 3927 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤))))
3926, 38mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤 → (𝐺‘(𝐹𝑧)) (𝐺𝑤)))
4039imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → (𝐺‘(𝐹𝑧)) (𝐺𝑤))
41 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
42 mgcoval.3 . . . . . . 7 = (le‘𝑉)
4341, 42prstr 18316 . . . . . 6 ((𝑉 ∈ Proset ∧ (𝑧𝐴 ∧ (𝐺‘(𝐹𝑧)) ∈ 𝐴 ∧ (𝐺𝑤) ∈ 𝐴) ∧ (𝑧 (𝐺‘(𝐹𝑧)) ∧ (𝐺‘(𝐹𝑧)) (𝐺𝑤))) → 𝑧 (𝐺𝑤))
445, 7, 11, 15, 24, 40, 43syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ (𝐹𝑧) 𝑤) → 𝑧 (𝐺𝑤))
45 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
4645ad3antrrr 730 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑊 ∈ Proset )
4735ad2antrr 726 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) ∈ 𝐵)
481ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝐹:𝐴𝐵)
4914adantr 480 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐺𝑤) ∈ 𝐴)
5048, 49ffvelcdmd 7080 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) ∈ 𝐵)
51 simplr 768 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → 𝑤𝐵)
52 dfmgc2lem.3 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
5352ad2antrr 726 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))
54 breq1 5127 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 𝑦𝑧 𝑦))
55 fveq2 6881 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5655breq1d 5134 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹𝑦)))
5754, 56imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ↔ (𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦))))
58 breq2 5128 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → (𝑧 𝑦𝑧 (𝐺𝑤)))
59 fveq2 6881 . . . . . . . . . . 11 (𝑦 = (𝐺𝑤) → (𝐹𝑦) = (𝐹‘(𝐺𝑤)))
6059breq2d 5136 . . . . . . . . . 10 (𝑦 = (𝐺𝑤) → ((𝐹𝑧) (𝐹𝑦) ↔ (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6158, 60imbi12d 344 . . . . . . . . 9 (𝑦 = (𝐺𝑤) → ((𝑧 𝑦 → (𝐹𝑧) (𝐹𝑦)) ↔ (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
62 eqidd 2737 . . . . . . . . 9 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑥 = 𝑧) → 𝐴 = 𝐴)
6357, 61, 6, 62, 14rspc2vd 3927 . . . . . . . 8 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))))
6453, 63mpd 15 . . . . . . 7 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → (𝑧 (𝐺𝑤) → (𝐹𝑧) (𝐹‘(𝐺𝑤))))
6564imp 406 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) (𝐹‘(𝐺𝑤)))
66 dfmgc2lem.6 . . . . . . . . 9 ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)
6766ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
6867ad3antrrr 730 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → ∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢)
69 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → 𝑢 = 𝑤)
7069fveq2d 6885 . . . . . . . . . 10 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐺𝑢) = (𝐺𝑤))
7170fveq2d 6885 . . . . . . . . 9 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝑤)))
7271, 69breq12d 5137 . . . . . . . 8 (((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) ∧ 𝑢 = 𝑤) → ((𝐹‘(𝐺𝑢)) 𝑢 ↔ (𝐹‘(𝐺𝑤)) 𝑤))
7351, 72rspcdv 3598 . . . . . . 7 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 → (𝐹‘(𝐺𝑤)) 𝑤))
7468, 73mpd 15 . . . . . 6 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹‘(𝐺𝑤)) 𝑤)
75 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
76 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7775, 76prstr 18316 . . . . . 6 ((𝑊 ∈ Proset ∧ ((𝐹𝑧) ∈ 𝐵 ∧ (𝐹‘(𝐺𝑤)) ∈ 𝐵𝑤𝐵) ∧ ((𝐹𝑧) (𝐹‘(𝐺𝑤)) ∧ (𝐹‘(𝐺𝑤)) 𝑤)) → (𝐹𝑧) 𝑤)
7846, 47, 50, 51, 65, 74, 77syl132anc 1390 . . . . 5 ((((𝜑𝑧𝐴) ∧ 𝑤𝐵) ∧ 𝑧 (𝐺𝑤)) → (𝐹𝑧) 𝑤)
7944, 78impbida 800 . . . 4 (((𝜑𝑧𝐴) ∧ 𝑤𝐵) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8079anasss 466 . . 3 ((𝜑 ∧ (𝑧𝐴𝑤𝐵)) → ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
8180ralrimivva 3188 . 2 (𝜑 → ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))
82 mgcval.1 . . 3 𝐻 = (𝑉MGalConn𝑊)
8341, 75, 42, 76, 82, 4, 45mgcval 32972 . 2 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑧𝐴𝑤𝐵 ((𝐹𝑧) 𝑤𝑧 (𝐺𝑤)))))
843, 81, 83mpbir2and 713 1 (𝜑𝐹𝐻𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283   Proset cproset 18309  MGalConncmgc 32964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-proset 18311  df-mgc 32966
This theorem is referenced by:  dfmgc2  32981
  Copyright terms: Public domain W3C validator