![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elwwlks2ons3 | Structured version Visualization version GIF version |
Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
elwwlks2ons3 | ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
2 | wwlks2onv.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | elwwlks2ons3im 27454 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |
4 | anass 461 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉))) | |
5 | 1, 3, 4 | sylanbrc 575 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉)) |
6 | simpr 477 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉) | |
7 | s3eq2 14088 | . . . . . 6 ⊢ (𝑏 = (𝑊‘1) → 〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
8 | eqeq2 2783 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 = 〈“𝐴𝑏𝐶”〉 ↔ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉)) | |
9 | eleq1 2847 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
10 | 8, 9 | anbi12d 621 | . . . . . 6 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝑏 = (𝑊‘1) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
12 | 11 | adantl 474 | . . . 4 ⊢ ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
13 | simpr 477 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
14 | eleq1 2847 | . . . . . . 7 ⊢ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
15 | 14 | biimpac 471 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
16 | 13, 15 | jca 504 | . . . . 5 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
17 | 16 | adantr 473 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
18 | 6, 12, 17 | rspcedvd 3536 | . . 3 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
19 | 5, 18 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
20 | eleq1 2847 | . . . . 5 ⊢ (〈“𝐴𝑏𝐶”〉 = 𝑊 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
21 | 20 | eqcoms 2780 | . . . 4 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
22 | 21 | biimpa 469 | . . 3 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
23 | 22 | rexlimivw 3221 | . 2 ⊢ (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
24 | 19, 23 | impbii 201 | 1 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3083 ‘cfv 6182 (class class class)co 6970 1c1 10330 2c2 11489 〈“cs3 14060 Vtxcvtx 26478 WWalksNOn cwwlksnon 27307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 df-fzo 12844 df-hash 13500 df-word 13667 df-concat 13728 df-s1 13753 df-s2 14066 df-s3 14067 df-wwlks 27310 df-wwlksn 27311 df-wwlksnon 27312 |
This theorem is referenced by: elwwlks2on 27459 frgr2wwlk1 27857 |
Copyright terms: Public domain | W3C validator |