| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elwwlks2ons3 | Structured version Visualization version GIF version | ||
| Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
| Ref | Expression |
|---|---|
| wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| elwwlks2ons3 | ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
| 2 | wwlks2onv.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | elwwlks2ons3im 29884 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |
| 4 | anass 468 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉))) | |
| 5 | 1, 3, 4 | sylanbrc 583 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉)) |
| 6 | simpr 484 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉) | |
| 7 | s3eq2 14836 | . . . . . 6 ⊢ (𝑏 = (𝑊‘1) → 〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
| 8 | eqeq2 2741 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 = 〈“𝐴𝑏𝐶”〉 ↔ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉)) | |
| 9 | eleq1 2816 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
| 10 | 8, 9 | anbi12d 632 | . . . . . 6 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝑏 = (𝑊‘1) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
| 14 | eleq1 2816 | . . . . . . 7 ⊢ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
| 15 | 14 | biimpac 478 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 16 | 13, 15 | jca 511 | . . . . 5 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 18 | 6, 12, 17 | rspcedvd 3590 | . . 3 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 19 | 5, 18 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 20 | eleq1 2816 | . . . . 5 ⊢ (〈“𝐴𝑏𝐶”〉 = 𝑊 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
| 21 | 20 | eqcoms 2737 | . . . 4 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 22 | 21 | biimpa 476 | . . 3 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 23 | 22 | rexlimivw 3130 | . 2 ⊢ (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 24 | 19, 23 | impbii 209 | 1 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6511 (class class class)co 7387 1c1 11069 2c2 12241 〈“cs3 14808 Vtxcvtx 28923 WWalksNOn cwwlksnon 29757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-wwlks 29760 df-wwlksn 29761 df-wwlksnon 29762 |
| This theorem is referenced by: elwwlks2on 29889 frgr2wwlk1 30258 |
| Copyright terms: Public domain | W3C validator |