Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3 Structured version   Visualization version   GIF version

Theorem elwwlks2ons3 27750
 Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwwlks2ons3
StepHypRef Expression
1 id 22 . . . 4 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2 wwlks2onv.v . . . . 5 𝑉 = (Vtx‘𝐺)
32elwwlks2ons3im 27749 . . . 4 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
4 anass 472 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
51, 3, 4sylanbrc 586 . . 3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉))
6 simpr 488 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉)
7 s3eq2 14234 . . . . . 6 (𝑏 = (𝑊‘1) → ⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩)
8 eqeq2 2836 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ↔ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩))
9 eleq1 2903 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
108, 9anbi12d 633 . . . . . 6 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
117, 10syl 17 . . . . 5 (𝑏 = (𝑊‘1) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1211adantl 485 . . . 4 ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
13 simpr 488 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
14 eleq1 2903 . . . . . . 7 (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
1514biimpac 482 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
1613, 15jca 515 . . . . 5 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
1716adantr 484 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
186, 12, 17rspcedvd 3612 . . 3 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
195, 18syl 17 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
20 eleq1 2903 . . . . 5 (⟨“𝐴𝑏𝐶”⟩ = 𝑊 → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
2120eqcoms 2832 . . . 4 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
2221biimpa 480 . . 3 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2322rexlimivw 3274 . 2 (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2419, 23impbii 212 1 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∃wrex 3134  ‘cfv 6345  (class class class)co 7151  1c1 10538  2c2 11691  ⟨“cs3 14206  Vtxcvtx 26798   WWalksNOn cwwlksnon 27622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12897  df-fzo 13040  df-hash 13698  df-word 13869  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-wwlks 27625  df-wwlksn 27626  df-wwlksnon 27627 This theorem is referenced by:  elwwlks2on  27754  frgr2wwlk1  28123
 Copyright terms: Public domain W3C validator