MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3 Structured version   Visualization version   GIF version

Theorem elwwlks2ons3 29933
Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
Distinct variable groups:   𝐴,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwwlks2ons3
StepHypRef Expression
1 id 22 . . . 4 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2 wwlks2onv.v . . . . 5 𝑉 = (Vtx‘𝐺)
32elwwlks2ons3im 29932 . . . 4 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
4 anass 468 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
51, 3, 4sylanbrc 583 . . 3 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉))
6 simpr 484 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉)
7 s3eq2 14777 . . . . . 6 (𝑏 = (𝑊‘1) → ⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩)
8 eqeq2 2743 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ↔ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩))
9 eleq1 2819 . . . . . . 7 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
108, 9anbi12d 632 . . . . . 6 (⟨“𝐴𝑏𝐶”⟩ = ⟨“𝐴(𝑊‘1)𝐶”⟩ → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
117, 10syl 17 . . . . 5 (𝑏 = (𝑊‘1) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
1211adantl 481 . . . 4 ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))))
13 simpr 484 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩)
14 eleq1 2819 . . . . . . 7 (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
1514biimpac 478 . . . . . 6 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
1613, 15jca 511 . . . . 5 ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
1716adantr 480 . . . 4 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩ ∧ ⟨“𝐴(𝑊‘1)𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
186, 12, 17rspcedvd 3574 . . 3 (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟨“𝐴(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
195, 18syl 17 . 2 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
20 eleq1 2819 . . . . 5 (⟨“𝐴𝑏𝐶”⟩ = 𝑊 → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
2120eqcoms 2739 . . . 4 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ → (⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
2221biimpa 476 . . 3 ((𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2322rexlimivw 3129 . 2 (∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))
2419, 23impbii 209 1 (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏𝑉 (𝑊 = ⟨“𝐴𝑏𝐶”⟩ ∧ ⟨“𝐴𝑏𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cfv 6481  (class class class)co 7346  1c1 11007  2c2 12180  ⟨“cs3 14749  Vtxcvtx 28974   WWalksNOn cwwlksnon 29805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-wwlks 29808  df-wwlksn 29809  df-wwlksnon 29810
This theorem is referenced by:  elwwlks2on  29939  elwspths2onw  29941  frgr2wwlk1  30309
  Copyright terms: Public domain W3C validator