| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elwwlks2ons3 | Structured version Visualization version GIF version | ||
| Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.) |
| Ref | Expression |
|---|---|
| wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| elwwlks2ons3 | ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) | |
| 2 | wwlks2onv.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | elwwlks2ons3im 29899 | . . . 4 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉)) |
| 4 | anass 468 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ (𝑊‘1) ∈ 𝑉))) | |
| 5 | 1, 3, 4 | sylanbrc 583 | . . 3 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉)) |
| 6 | simpr 484 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉) | |
| 7 | s3eq2 14777 | . . . . . 6 ⊢ (𝑏 = (𝑊‘1) → 〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
| 8 | eqeq2 2741 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 = 〈“𝐴𝑏𝐶”〉 ↔ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉)) | |
| 9 | eleq1 2816 | . . . . . . 7 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
| 10 | 8, 9 | anbi12d 632 | . . . . . 6 ⊢ (〈“𝐴𝑏𝐶”〉 = 〈“𝐴(𝑊‘1)𝐶”〉 → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 11 | 7, 10 | syl 17 | . . . . 5 ⊢ (𝑏 = (𝑊‘1) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)))) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) | |
| 14 | eleq1 2816 | . . . . . . 7 ⊢ (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 → (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
| 15 | 14 | biimpac 478 | . . . . . 6 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 16 | 13, 15 | jca 511 | . . . . 5 ⊢ ((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉 ∧ 〈“𝐴(𝑊‘1)𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 18 | 6, 12, 17 | rspcedvd 3579 | . . 3 ⊢ (((𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = 〈“𝐴(𝑊‘1)𝐶”〉) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 19 | 5, 18 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 20 | eleq1 2816 | . . . . 5 ⊢ (〈“𝐴𝑏𝐶”〉 = 𝑊 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) | |
| 21 | 20 | eqcoms 2737 | . . . 4 ⊢ (𝑊 = 〈“𝐴𝑏𝐶”〉 → (〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| 22 | 21 | biimpa 476 | . . 3 ⊢ ((𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 23 | 22 | rexlimivw 3126 | . 2 ⊢ (∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) |
| 24 | 19, 23 | impbii 209 | 1 ⊢ (𝑊 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = 〈“𝐴𝑏𝐶”〉 ∧ 〈“𝐴𝑏𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6482 (class class class)co 7349 1c1 11010 2c2 12183 〈“cs3 14749 Vtxcvtx 28941 WWalksNOn cwwlksnon 29772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-wwlks 29775 df-wwlksn 29776 df-wwlksnon 29777 |
| This theorem is referenced by: elwwlks2on 29904 frgr2wwlk1 30273 |
| Copyright terms: Public domain | W3C validator |