Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . 4
⢠(ð â (ðŽ(2 WWalksNOn ðº)ð¶) â ð â (ðŽ(2 WWalksNOn ðº)ð¶)) |
2 | | wwlks2onv.v |
. . . . 5
⢠ð = (Vtxâðº) |
3 | 2 | elwwlks2ons3im 29197 |
. . . 4
⢠(ð â (ðŽ(2 WWalksNOn ðº)ð¶) â (ð = âšâðŽ(ðâ1)ð¶â⩠⧠(ðâ1) â ð)) |
4 | | anass 469 |
. . . 4
⢠(((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) ⧠(ðâ1) â ð) â (ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠(ð = âšâðŽ(ðâ1)ð¶â⩠⧠(ðâ1) â ð))) |
5 | 1, 3, 4 | sylanbrc 583 |
. . 3
⢠(ð â (ðŽ(2 WWalksNOn ðº)ð¶) â ((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) ⧠(ðâ1) â ð)) |
6 | | simpr 485 |
. . . 4
⢠(((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) ⧠(ðâ1) â ð) â (ðâ1) â ð) |
7 | | s3eq2 14817 |
. . . . . 6
⢠(ð = (ðâ1) â âšâðŽðð¶ââ© = âšâðŽ(ðâ1)ð¶ââ©) |
8 | | eqeq2 2744 |
. . . . . . 7
â¢
(âšâðŽðð¶ââ© = âšâðŽ(ðâ1)ð¶ââ© â (ð = âšâðŽðð¶ââ© â ð = âšâðŽ(ðâ1)ð¶ââ©)) |
9 | | eleq1 2821 |
. . . . . . 7
â¢
(âšâðŽðð¶ââ© = âšâðŽ(ðâ1)ð¶ââ© â (âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶) â âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |
10 | 8, 9 | anbi12d 631 |
. . . . . 6
â¢
(âšâðŽðð¶ââ© = âšâðŽ(ðâ1)ð¶ââ© â ((ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)) â (ð = âšâðŽ(ðâ1)ð¶â⩠⧠âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)))) |
11 | 7, 10 | syl 17 |
. . . . 5
⢠(ð = (ðâ1) â ((ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)) â (ð = âšâðŽ(ðâ1)ð¶â⩠⧠âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)))) |
12 | 11 | adantl 482 |
. . . 4
⢠((((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) ⧠(ðâ1) â ð) ⧠ð = (ðâ1)) â ((ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)) â (ð = âšâðŽ(ðâ1)ð¶â⩠⧠âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)))) |
13 | | simpr 485 |
. . . . . 6
⢠((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) â ð = âšâðŽ(ðâ1)ð¶ââ©) |
14 | | eleq1 2821 |
. . . . . . 7
⢠(ð = âšâðŽ(ðâ1)ð¶ââ© â (ð â (ðŽ(2 WWalksNOn ðº)ð¶) â âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |
15 | 14 | biimpac 479 |
. . . . . 6
⢠((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) â âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)) |
16 | 13, 15 | jca 512 |
. . . . 5
⢠((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) â (ð = âšâðŽ(ðâ1)ð¶â⩠⧠âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |
17 | 16 | adantr 481 |
. . . 4
⢠(((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) ⧠(ðâ1) â ð) â (ð = âšâðŽ(ðâ1)ð¶â⩠⧠âšâðŽ(ðâ1)ð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |
18 | 6, 12, 17 | rspcedvd 3614 |
. . 3
⢠(((ð â (ðŽ(2 WWalksNOn ðº)ð¶) ⧠ð = âšâðŽ(ðâ1)ð¶ââ©) ⧠(ðâ1) â ð) â âð â ð (ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |
19 | 5, 18 | syl 17 |
. 2
⢠(ð â (ðŽ(2 WWalksNOn ðº)ð¶) â âð â ð (ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |
20 | | eleq1 2821 |
. . . . 5
â¢
(âšâðŽðð¶ââ© = ð â (âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶) â ð â (ðŽ(2 WWalksNOn ðº)ð¶))) |
21 | 20 | eqcoms 2740 |
. . . 4
⢠(ð = âšâðŽðð¶ââ© â (âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶) â ð â (ðŽ(2 WWalksNOn ðº)ð¶))) |
22 | 21 | biimpa 477 |
. . 3
⢠((ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)) â ð â (ðŽ(2 WWalksNOn ðº)ð¶)) |
23 | 22 | rexlimivw 3151 |
. 2
â¢
(âð â
ð (ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶)) â ð â (ðŽ(2 WWalksNOn ðº)ð¶)) |
24 | 19, 23 | impbii 208 |
1
⢠(ð â (ðŽ(2 WWalksNOn ðº)ð¶) â âð â ð (ð = âšâðŽðð¶â⩠⧠âšâðŽðð¶ââ© â (ðŽ(2 WWalksNOn ðº)ð¶))) |