MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elwwlks2ons3 Structured version   Visualization version   GIF version

Theorem elwwlks2ons3 29198
Description: For each walk of length 2 between two vertices, there is a third vertex in the middle of the walk. (Contributed by Alexander van der Vekens, 15-Feb-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlks2onv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
elwwlks2ons3 (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
Distinct variable groups:   𝐎,𝑏   𝐶,𝑏   𝐺,𝑏   𝑉,𝑏   𝑊,𝑏

Proof of Theorem elwwlks2ons3
StepHypRef Expression
1 id 22 . . . 4 (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) → 𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))
2 wwlks2onv.v . . . . 5 𝑉 = (Vtx‘𝐺)
32elwwlks2ons3im 29197 . . . 4 (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) → (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉))
4 anass 469 . . . 4 (((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ↔ (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ (𝑊‘1) ∈ 𝑉)))
51, 3, 4sylanbrc 583 . . 3 (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) → ((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉))
6 simpr 485 . . . 4 (((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊‘1) ∈ 𝑉)
7 s3eq2 14817 . . . . . 6 (𝑏 = (𝑊‘1) → ⟚“𝐎𝑏𝐶”⟩ = ⟚“𝐎(𝑊‘1)𝐶”⟩)
8 eqeq2 2744 . . . . . . 7 (⟚“𝐎𝑏𝐶”⟩ = ⟚“𝐎(𝑊‘1)𝐶”⟩ → (𝑊 = ⟚“𝐎𝑏𝐶”⟩ ↔ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩))
9 eleq1 2821 . . . . . . 7 (⟚“𝐎𝑏𝐶”⟩ = ⟚“𝐎(𝑊‘1)𝐶”⟩ → (⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ↔ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
108, 9anbi12d 631 . . . . . 6 (⟚“𝐎𝑏𝐶”⟩ = ⟚“𝐎(𝑊‘1)𝐶”⟩ → ((𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))))
117, 10syl 17 . . . . 5 (𝑏 = (𝑊‘1) → ((𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))))
1211adantl 482 . . . 4 ((((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) ∧ 𝑏 = (𝑊‘1)) → ((𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)) ↔ (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))))
13 simpr 485 . . . . . 6 ((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) → 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩)
14 eleq1 2821 . . . . . . 7 (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ → (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ↔ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
1514biimpac 479 . . . . . 6 ((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) → ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))
1613, 15jca 512 . . . . 5 ((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) → (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
1716adantr 481 . . . 4 (((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → (𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩ ∧ ⟚“𝐎(𝑊‘1)𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
186, 12, 17rspcedvd 3614 . . 3 (((𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ∧ 𝑊 = ⟚“𝐎(𝑊‘1)𝐶”⟩) ∧ (𝑊‘1) ∈ 𝑉) → ∃𝑏 ∈ 𝑉 (𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
195, 18syl 17 . 2 (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) → ∃𝑏 ∈ 𝑉 (𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
20 eleq1 2821 . . . . 5 (⟚“𝐎𝑏𝐶”⟩ = 𝑊 → (⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
2120eqcoms 2740 . . . 4 (𝑊 = ⟚“𝐎𝑏𝐶”⟩ → (⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ↔ 𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
2221biimpa 477 . . 3 ((𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))
2322rexlimivw 3151 . 2 (∃𝑏 ∈ 𝑉 (𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)) → 𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶))
2419, 23impbii 208 1 (𝑊 ∈ (𝐎(2 WWalksNOn 𝐺)𝐶) ↔ ∃𝑏 ∈ 𝑉 (𝑊 = ⟚“𝐎𝑏𝐶”⟩ ∧ ⟚“𝐎𝑏𝐶”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐶)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  âˆƒwrex 3070  â€˜cfv 6540  (class class class)co 7405  1c1 11107  2c2 12263  âŸšâ€œcs3 14789  Vtxcvtx 28245   WWalksNOn cwwlksnon 29070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-wwlks 29073  df-wwlksn 29074  df-wwlksnon 29075
This theorem is referenced by:  elwwlks2on  29202  frgr2wwlk1  29571
  Copyright terms: Public domain W3C validator