![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperp2 | Structured version Visualization version GIF version |
Description: Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
Ref | Expression |
---|---|
isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
isperp.d | ⊢ − = (dist‘𝐺) |
isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
isperp2.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
isperp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
isperp2 | ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2736 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑢 = 𝑢) | |
2 | isperp.p | . . . . . . . . . 10 ⊢ 𝑃 = (Base‘𝐺) | |
3 | isperp.i | . . . . . . . . . 10 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | isperp.l | . . . . . . . . . 10 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | isperp.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐺 ∈ TarskiG) |
7 | isperp.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | 7 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ ran 𝐿) |
9 | isperp2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
10 | 9 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐵 ∈ ran 𝐿) |
11 | isperp.d | . . . . . . . . . . 11 ⊢ − = (dist‘𝐺) | |
12 | simp-4r 784 | . . . . . . . . . . 11 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴(⟂G‘𝐺)𝐵) | |
13 | 2, 11, 3, 4, 6, 8, 10, 12 | perpneq 28737 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
14 | simpllr 776 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ (𝐴 ∩ 𝐵)) | |
15 | isperp2.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
16 | 15 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
17 | 2, 3, 4, 6, 8, 10, 13, 14, 16 | tglineineq 28666 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 = 𝑋) |
18 | eqidd 2736 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 = 𝑣) | |
19 | 1, 17, 18 | s3eqd 14900 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) |
20 | 19 | eleq1d 2824 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
21 | 20 | biimpd 229 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
22 | 21 | ralimdva 3165 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
23 | 22 | ralimdva 3165 | . . . 4 ⊢ (((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
24 | 23 | imp 406 | . . 3 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
25 | 2, 11, 3, 4, 5, 7, 9 | isperp 28735 | . . . 4 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
26 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
27 | 24, 26 | r19.29a 3160 | . 2 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
28 | s3eq2 14906 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) | |
29 | 28 | eleq1d 2824 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
30 | 29 | 2ralbidv 3219 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
31 | 30 | rspcev 3622 | . . . 4 ⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
32 | 15, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
33 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
34 | 32, 33 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → 𝐴(⟂G‘𝐺)𝐵) |
35 | 27, 34 | impbida 801 | 1 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 class class class wbr 5148 ran crn 5690 ‘cfv 6563 〈“cs3 14878 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 ∟Gcrag 28716 ⟂Gcperpg 28718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 df-cgrg 28534 df-mir 28676 df-rag 28717 df-perpg 28719 |
This theorem is referenced by: isperp2d 28739 ragperp 28740 foot 28745 |
Copyright terms: Public domain | W3C validator |