| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isperp2 | Structured version Visualization version GIF version | ||
| Description: Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
| isperp.d | ⊢ − = (dist‘𝐺) |
| isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| isperp2.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| isperp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Ref | Expression |
|---|---|
| isperp2 | ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑢 = 𝑢) | |
| 2 | isperp.p | . . . . . . . . . 10 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | isperp.i | . . . . . . . . . 10 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | isperp.l | . . . . . . . . . 10 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | isperp.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐺 ∈ TarskiG) |
| 7 | isperp.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | 7 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ ran 𝐿) |
| 9 | isperp2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
| 10 | 9 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐵 ∈ ran 𝐿) |
| 11 | isperp.d | . . . . . . . . . . 11 ⊢ − = (dist‘𝐺) | |
| 12 | simp-4r 783 | . . . . . . . . . . 11 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴(⟂G‘𝐺)𝐵) | |
| 13 | 2, 11, 3, 4, 6, 8, 10, 12 | perpneq 28693 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
| 14 | simpllr 775 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ (𝐴 ∩ 𝐵)) | |
| 15 | isperp2.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
| 16 | 15 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| 17 | 2, 3, 4, 6, 8, 10, 13, 14, 16 | tglineineq 28622 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 = 𝑋) |
| 18 | eqidd 2732 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 = 𝑣) | |
| 19 | 1, 17, 18 | s3eqd 14771 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) |
| 20 | 19 | eleq1d 2816 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 21 | 20 | biimpd 229 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 22 | 21 | ralimdva 3144 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 23 | 22 | ralimdva 3144 | . . . 4 ⊢ (((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 24 | 23 | imp 406 | . . 3 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 25 | 2, 11, 3, 4, 5, 7, 9 | isperp 28691 | . . . 4 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 26 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 27 | 24, 26 | r19.29a 3140 | . 2 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 28 | s3eq2 14777 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) | |
| 29 | 28 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 30 | 29 | 2ralbidv 3196 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 31 | 30 | rspcev 3577 | . . . 4 ⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 32 | 15, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 33 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 34 | 32, 33 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → 𝐴(⟂G‘𝐺)𝐵) |
| 35 | 27, 34 | impbida 800 | 1 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 class class class wbr 5091 ran crn 5617 ‘cfv 6481 〈“cs3 14749 Basecbs 17120 distcds 17170 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 ∟Gcrag 28672 ⟂Gcperpg 28674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 df-mir 28632 df-rag 28673 df-perpg 28675 |
| This theorem is referenced by: isperp2d 28695 ragperp 28696 foot 28701 |
| Copyright terms: Public domain | W3C validator |