Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isperp2 | Structured version Visualization version GIF version |
Description: Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
Ref | Expression |
---|---|
isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
isperp.d | ⊢ − = (dist‘𝐺) |
isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
isperp2.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
isperp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
isperp2 | ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑢 = 𝑢) | |
2 | isperp.p | . . . . . . . . . 10 ⊢ 𝑃 = (Base‘𝐺) | |
3 | isperp.i | . . . . . . . . . 10 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | isperp.l | . . . . . . . . . 10 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | isperp.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | ad4antr 728 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐺 ∈ TarskiG) |
7 | isperp.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | 7 | ad4antr 728 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ ran 𝐿) |
9 | isperp2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
10 | 9 | ad4antr 728 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐵 ∈ ran 𝐿) |
11 | isperp.d | . . . . . . . . . . 11 ⊢ − = (dist‘𝐺) | |
12 | simp-4r 780 | . . . . . . . . . . 11 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴(⟂G‘𝐺)𝐵) | |
13 | 2, 11, 3, 4, 6, 8, 10, 12 | perpneq 26979 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
14 | simpllr 772 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ (𝐴 ∩ 𝐵)) | |
15 | isperp2.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
16 | 15 | ad4antr 728 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
17 | 2, 3, 4, 6, 8, 10, 13, 14, 16 | tglineineq 26908 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 = 𝑋) |
18 | eqidd 2739 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 = 𝑣) | |
19 | 1, 17, 18 | s3eqd 14505 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) |
20 | 19 | eleq1d 2823 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
21 | 20 | biimpd 228 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
22 | 21 | ralimdva 3102 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
23 | 22 | ralimdva 3102 | . . . 4 ⊢ (((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
24 | 23 | imp 406 | . . 3 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
25 | 2, 11, 3, 4, 5, 7, 9 | isperp 26977 | . . . 4 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
26 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
27 | 24, 26 | r19.29a 3217 | . 2 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
28 | s3eq2 14511 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) | |
29 | 28 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
30 | 29 | 2ralbidv 3122 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
31 | 30 | rspcev 3552 | . . . 4 ⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
32 | 15, 31 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
33 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
34 | 32, 33 | mpbird 256 | . 2 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → 𝐴(⟂G‘𝐺)𝐵) |
35 | 27, 34 | impbida 797 | 1 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 class class class wbr 5070 ran crn 5581 ‘cfv 6418 〈“cs3 14483 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 ∟Gcrag 26958 ⟂Gcperpg 26960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 df-mir 26918 df-rag 26959 df-perpg 26961 |
This theorem is referenced by: isperp2d 26981 ragperp 26982 foot 26987 |
Copyright terms: Public domain | W3C validator |