| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isperp2 | Structured version Visualization version GIF version | ||
| Description: Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
| isperp.d | ⊢ − = (dist‘𝐺) |
| isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| isperp2.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| isperp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Ref | Expression |
|---|---|
| isperp2 | ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑢 = 𝑢) | |
| 2 | isperp.p | . . . . . . . . . 10 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | isperp.i | . . . . . . . . . 10 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | isperp.l | . . . . . . . . . 10 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | isperp.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐺 ∈ TarskiG) |
| 7 | isperp.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | 7 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ ran 𝐿) |
| 9 | isperp2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
| 10 | 9 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐵 ∈ ran 𝐿) |
| 11 | isperp.d | . . . . . . . . . . 11 ⊢ − = (dist‘𝐺) | |
| 12 | simp-4r 783 | . . . . . . . . . . 11 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴(⟂G‘𝐺)𝐵) | |
| 13 | 2, 11, 3, 4, 6, 8, 10, 12 | perpneq 28695 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
| 14 | simpllr 775 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ (𝐴 ∩ 𝐵)) | |
| 15 | isperp2.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
| 16 | 15 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| 17 | 2, 3, 4, 6, 8, 10, 13, 14, 16 | tglineineq 28624 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 = 𝑋) |
| 18 | eqidd 2734 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 = 𝑣) | |
| 19 | 1, 17, 18 | s3eqd 14775 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) |
| 20 | 19 | eleq1d 2818 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 21 | 20 | biimpd 229 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 22 | 21 | ralimdva 3145 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 23 | 22 | ralimdva 3145 | . . . 4 ⊢ (((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 24 | 23 | imp 406 | . . 3 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 25 | 2, 11, 3, 4, 5, 7, 9 | isperp 28693 | . . . 4 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 26 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 27 | 24, 26 | r19.29a 3141 | . 2 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 28 | s3eq2 14781 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) | |
| 29 | 28 | eleq1d 2818 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 30 | 29 | 2ralbidv 3197 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 31 | 30 | rspcev 3573 | . . . 4 ⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 32 | 15, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 33 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 34 | 32, 33 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → 𝐴(⟂G‘𝐺)𝐵) |
| 35 | 27, 34 | impbida 800 | 1 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 class class class wbr 5095 ran crn 5622 ‘cfv 6488 〈“cs3 14753 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 ∟Gcrag 28674 ⟂Gcperpg 28676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 df-cgrg 28492 df-mir 28634 df-rag 28675 df-perpg 28677 |
| This theorem is referenced by: isperp2d 28697 ragperp 28698 foot 28703 |
| Copyright terms: Public domain | W3C validator |