| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isperp2 | Structured version Visualization version GIF version | ||
| Description: Property for 2 lines A, B, intersecting at a point X to be perpendicular. Item (i) of definition 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
| isperp.d | ⊢ − = (dist‘𝐺) |
| isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
| isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
| isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| isperp2.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| isperp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Ref | Expression |
|---|---|
| isperp2 | ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑢 = 𝑢) | |
| 2 | isperp.p | . . . . . . . . . 10 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | isperp.i | . . . . . . . . . 10 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | isperp.l | . . . . . . . . . 10 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | isperp.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐺 ∈ TarskiG) |
| 7 | isperp.a | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | 7 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ∈ ran 𝐿) |
| 9 | isperp2.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
| 10 | 9 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐵 ∈ ran 𝐿) |
| 11 | isperp.d | . . . . . . . . . . 11 ⊢ − = (dist‘𝐺) | |
| 12 | simp-4r 783 | . . . . . . . . . . 11 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴(⟂G‘𝐺)𝐵) | |
| 13 | 2, 11, 3, 4, 6, 8, 10, 12 | perpneq 28677 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝐴 ≠ 𝐵) |
| 14 | simpllr 775 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 ∈ (𝐴 ∩ 𝐵)) | |
| 15 | isperp2.x | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
| 16 | 15 | ad4antr 732 | . . . . . . . . . 10 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| 17 | 2, 3, 4, 6, 8, 10, 13, 14, 16 | tglineineq 28606 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑥 = 𝑋) |
| 18 | eqidd 2730 | . . . . . . . . 9 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 𝑣 = 𝑣) | |
| 19 | 1, 17, 18 | s3eqd 14789 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) |
| 20 | 19 | eleq1d 2813 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 21 | 20 | biimpd 229 | . . . . . 6 ⊢ (((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ 𝐵) → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 22 | 21 | ralimdva 3141 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ 𝑢 ∈ 𝐴) → (∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 23 | 22 | ralimdva 3141 | . . . 4 ⊢ (((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 24 | 23 | imp 406 | . . 3 ⊢ ((((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 25 | 2, 11, 3, 4, 5, 7, 9 | isperp 28675 | . . . 4 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 26 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 27 | 24, 26 | r19.29a 3137 | . 2 ⊢ ((𝜑 ∧ 𝐴(⟂G‘𝐺)𝐵) → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
| 28 | s3eq2 14795 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 〈“𝑢𝑥𝑣”〉 = 〈“𝑢𝑋𝑣”〉) | |
| 29 | 28 | eleq1d 2813 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 30 | 29 | 2ralbidv 3193 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| 31 | 30 | rspcev 3579 | . . . 4 ⊢ ((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 32 | 15, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺)) |
| 33 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐵)∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝐺))) |
| 34 | 32, 33 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) → 𝐴(⟂G‘𝐺)𝐵) |
| 35 | 27, 34 | impbida 800 | 1 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∩ cin 3904 class class class wbr 5095 ran crn 5624 ‘cfv 6486 〈“cs3 14767 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 ∟Gcrag 28656 ⟂Gcperpg 28658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-cgrg 28474 df-mir 28616 df-rag 28657 df-perpg 28659 |
| This theorem is referenced by: isperp2d 28679 ragperp 28680 foot 28685 |
| Copyright terms: Public domain | W3C validator |