MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeqm Structured version   Visualization version   GIF version

Theorem frgr2wwlkeqm 30180
Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 7-Jan-2022.)
Assertion
Ref Expression
frgr2wwlkeqm ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → ((⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → 𝑄 = 𝑃))

Proof of Theorem frgr2wwlkeqm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1198 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → 𝑃 ∈ 𝑋)
2 eqid 2725 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
32wwlks2onv 29803 . . . 4 ((𝑃 ∈ 𝑋 ∧ ⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
41, 3sylan 578 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
5 simp3r 1199 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → 𝑄 ∈ 𝑌)
62wwlks2onv 29803 . . . . . . . 8 ((𝑄 ∈ 𝑌 ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐎 ∈ (Vtx‘𝐺)))
75, 6sylan 578 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐎 ∈ (Vtx‘𝐺)))
8 frgrusgr 30110 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
9 usgrumgr 29033 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
11103ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → 𝐺 ∈ UMGraph)
12 simpr3 1193 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐵 ∈ (Vtx‘𝐺))
13 simpl 481 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝑄 ∈ (Vtx‘𝐺))
14 simpr1 1191 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐎 ∈ (Vtx‘𝐺))
1512, 13, 143jca 1125 . . . . . . . . . . . . 13 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐎 ∈ (Vtx‘𝐺)))
162wwlks2onsym 29808 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐎 ∈ (Vtx‘𝐺))) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) ↔ ⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)))
1711, 15, 16syl2anr 595 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) ↔ ⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)))
18 simpr1 1191 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → 𝐺 ∈ FriendGraph )
19 3simpb 1146 . . . . . . . . . . . . . . 15 ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐎 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
2019ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → (𝐎 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
21 simpr2 1192 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → 𝐎 ≠ 𝐵)
222frgr2wwlkeu 30176 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ 𝐎 ≠ 𝐵) → ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵))
2318, 20, 21, 22syl3anc 1368 . . . . . . . . . . . . 13 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵))
24 s3eq2 14848 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑄 → ⟚“𝐎𝑥𝐵”⟩ = ⟚“𝐎𝑄𝐵”⟩)
2524eleq1d 2810 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑄 → (⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ↔ ⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)))
2625riota2 7395 . . . . . . . . . . . . . . 15 ((𝑄 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ↔ (℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
2726ad4ant14 750 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ↔ (℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
28 simplr2 1213 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → 𝑃 ∈ (Vtx‘𝐺))
29 s3eq2 14848 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑃 → ⟚“𝐎𝑥𝐵”⟩ = ⟚“𝐎𝑃𝐵”⟩)
3029eleq1d 2810 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑃 → (⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ↔ ⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)))
3130riota2 7395 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ↔ (℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
3228, 31sylan 578 . . . . . . . . . . . . . . . 16 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ↔ (℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
33 eqtr2 2749 . . . . . . . . . . . . . . . . 17 (((℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑄 ∧ (℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑃) → 𝑄 = 𝑃)
3433expcom 412 . . . . . . . . . . . . . . . 16 ((℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑃 → ((℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → 𝑄 = 𝑃))
3532, 34biimtrdi 252 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → ((℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → 𝑄 = 𝑃)))
3635com23 86 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → ((℩𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3727, 36sylbid 239 . . . . . . . . . . . . 13 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟚“𝐎𝑥𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3823, 37mpdan 685 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → (⟚“𝐎𝑄𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3917, 38sylbid 239 . . . . . . . . . . 11 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌))) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4039expimpd 452 . . . . . . . . . 10 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4140ex 411 . . . . . . . . 9 (𝑄 ∈ (Vtx‘𝐺) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4241com23 86 . . . . . . . 8 (𝑄 ∈ (Vtx‘𝐺) → (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
43423ad2ant2 1131 . . . . . . 7 ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐎 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
447, 43mpcom 38 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4544ex 411 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4645com24 95 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → (⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) → 𝑄 = 𝑃))))
4746imp 405 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → ((𝐎 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) → 𝑄 = 𝑃)))
484, 47mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) ∧ ⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵)) → (⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎) → 𝑄 = 𝑃))
4948expimpd 452 1 ((𝐺 ∈ FriendGraph ∧ 𝐎 ≠ 𝐵 ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌)) → ((⟚“𝐎𝑃𝐵”⟩ ∈ (𝐎(2 WWalksNOn 𝐺)𝐵) ∧ ⟚“𝐵𝑄𝐎”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐎)) → 𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ≠ wne 2930  âˆƒ!wreu 3362  â€˜cfv 6543  â„©crio 7368  (class class class)co 7413  2c2 12292  âŸšâ€œcs3 14820  Vtxcvtx 28848  UMGraphcumgr 28933  USGraphcusgr 29001   WWalksNOn cwwlksnon 29677   FriendGraph cfrgr 30107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-ac2 10481  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-ac 10134  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-concat 14548  df-s1 14573  df-s2 14826  df-s3 14827  df-edg 28900  df-uhgr 28910  df-upgr 28934  df-umgr 28935  df-usgr 29003  df-wlks 29452  df-wwlks 29680  df-wwlksn 29681  df-wwlksnon 29682  df-frgr 30108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator