MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeqm Structured version   Visualization version   GIF version

Theorem frgr2wwlkeqm 28109
Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 7-Jan-2022.)
Assertion
Ref Expression
frgr2wwlkeqm ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))

Proof of Theorem frgr2wwlkeqm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1197 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑃𝑋)
2 eqid 2821 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
32wwlks2onv 27731 . . . 4 ((𝑃𝑋 ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
41, 3sylan 582 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
5 simp3r 1198 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑄𝑌)
62wwlks2onv 27731 . . . . . . . 8 ((𝑄𝑌 ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
75, 6sylan 582 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
8 frgrusgr 28039 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
9 usgrumgr 26963 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
11103ad2ant1 1129 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝐺 ∈ UMGraph)
12 simpr3 1192 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐵 ∈ (Vtx‘𝐺))
13 simpl 485 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝑄 ∈ (Vtx‘𝐺))
14 simpr1 1190 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐴 ∈ (Vtx‘𝐺))
1512, 13, 143jca 1124 . . . . . . . . . . . . 13 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
162wwlks2onsym 27736 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1711, 15, 16syl2anr 598 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
18 simpr1 1190 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐺 ∈ FriendGraph )
19 3simpb 1145 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
2019ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
21 simpr2 1191 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐴𝐵)
222frgr2wwlkeu 28105 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ 𝐴𝐵) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
2318, 20, 21, 22syl3anc 1367 . . . . . . . . . . . . 13 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
24 s3eq2 14231 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑄 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑄𝐵”⟩)
2524eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑄 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
2625riota2 7138 . . . . . . . . . . . . . . 15 ((𝑄 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
2726ad4ant14 750 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
28 simplr2 1212 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝑃 ∈ (Vtx‘𝐺))
29 s3eq2 14231 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑃 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑃𝐵”⟩)
3029eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑃 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
3130riota2 7138 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
3228, 31sylan 582 . . . . . . . . . . . . . . . 16 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
33 eqtr2 2842 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 ∧ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃) → 𝑄 = 𝑃)
3433expcom 416 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃 → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃))
3532, 34syl6bi 255 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃)))
3635com23 86 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3727, 36sylbid 242 . . . . . . . . . . . . 13 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3823, 37mpdan 685 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3917, 38sylbid 242 . . . . . . . . . . 11 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4039expimpd 456 . . . . . . . . . 10 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4140ex 415 . . . . . . . . 9 (𝑄 ∈ (Vtx‘𝐺) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4241com23 86 . . . . . . . 8 (𝑄 ∈ (Vtx‘𝐺) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
43423ad2ant2 1130 . . . . . . 7 ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
447, 43mpcom 38 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4544ex 415 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4645com24 95 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))))
4746imp 409 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃)))
484, 47mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))
4948expimpd 456 1 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  ∃!wreu 3140  cfv 6354  crio 7112  (class class class)co 7155  2c2 11691  ⟨“cs3 14203  Vtxcvtx 26780  UMGraphcumgr 26865  USGraphcusgr 26933   WWalksNOn cwwlksnon 27604   FriendGraph cfrgr 28036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-dju 9329  df-card 9367  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-concat 13922  df-s1 13949  df-s2 14209  df-s3 14210  df-edg 26832  df-uhgr 26842  df-upgr 26866  df-umgr 26867  df-usgr 26935  df-wlks 27380  df-wwlks 27607  df-wwlksn 27608  df-wwlksnon 27609  df-frgr 28037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator