MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeqm Structured version   Visualization version   GIF version

Theorem frgr2wwlkeqm 30360
Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 7-Jan-2022.)
Assertion
Ref Expression
frgr2wwlkeqm ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))

Proof of Theorem frgr2wwlkeqm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1200 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑃𝑋)
2 eqid 2735 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
32wwlks2onv 29983 . . . 4 ((𝑃𝑋 ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
41, 3sylan 580 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
5 simp3r 1201 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑄𝑌)
62wwlks2onv 29983 . . . . . . . 8 ((𝑄𝑌 ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
75, 6sylan 580 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
8 frgrusgr 30290 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
9 usgrumgr 29213 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
11103ad2ant1 1132 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝐺 ∈ UMGraph)
12 simpr3 1195 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐵 ∈ (Vtx‘𝐺))
13 simpl 482 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝑄 ∈ (Vtx‘𝐺))
14 simpr1 1193 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐴 ∈ (Vtx‘𝐺))
1512, 13, 143jca 1127 . . . . . . . . . . . . 13 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
162wwlks2onsym 29988 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1711, 15, 16syl2anr 597 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
18 simpr1 1193 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐺 ∈ FriendGraph )
19 3simpb 1148 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
2019ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
21 simpr2 1194 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐴𝐵)
222frgr2wwlkeu 30356 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ 𝐴𝐵) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
2318, 20, 21, 22syl3anc 1370 . . . . . . . . . . . . 13 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
24 s3eq2 14906 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑄 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑄𝐵”⟩)
2524eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑄 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
2625riota2 7413 . . . . . . . . . . . . . . 15 ((𝑄 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
2726ad4ant14 752 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
28 simplr2 1215 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝑃 ∈ (Vtx‘𝐺))
29 s3eq2 14906 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑃 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑃𝐵”⟩)
3029eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑃 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
3130riota2 7413 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
3228, 31sylan 580 . . . . . . . . . . . . . . . 16 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
33 eqtr2 2759 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 ∧ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃) → 𝑄 = 𝑃)
3433expcom 413 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃 → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃))
3532, 34biimtrdi 253 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃)))
3635com23 86 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3727, 36sylbid 240 . . . . . . . . . . . . 13 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3823, 37mpdan 687 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3917, 38sylbid 240 . . . . . . . . . . 11 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4039expimpd 453 . . . . . . . . . 10 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4140ex 412 . . . . . . . . 9 (𝑄 ∈ (Vtx‘𝐺) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4241com23 86 . . . . . . . 8 (𝑄 ∈ (Vtx‘𝐺) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
43423ad2ant2 1133 . . . . . . 7 ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
447, 43mpcom 38 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4544ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4645com24 95 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))))
4746imp 406 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃)))
484, 47mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))
4948expimpd 453 1 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  ∃!wreu 3376  cfv 6563  crio 7387  (class class class)co 7431  2c2 12319  ⟨“cs3 14878  Vtxcvtx 29028  UMGraphcumgr 29113  USGraphcusgr 29181   WWalksNOn cwwlksnon 29857   FriendGraph cfrgr 30287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-wlks 29632  df-wwlks 29860  df-wwlksn 29861  df-wwlksnon 29862  df-frgr 30288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator