| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenn0 | Structured version Visualization version GIF version | ||
| Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgenn0 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7741 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
| 2 | pwsal 46263 | . . . . 5 ⊢ (∪ 𝑋 ∈ V → 𝒫 ∪ 𝑋 ∈ SAlg) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ SAlg) |
| 4 | unipw 5435 | . . . . . 6 ⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋) |
| 6 | pwuni 4925 | . . . . . 6 ⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋) |
| 8 | 5, 7 | jca 511 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋)) |
| 9 | 3, 8 | jca 511 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
| 10 | unieq 4898 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ∪ 𝑠 = ∪ 𝒫 ∪ 𝑋) | |
| 11 | 10 | eqeq1d 2736 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋)) |
| 12 | sseq2 3990 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋)) | |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
| 14 | 13 | elrab 3675 | . . 3 ⊢ (𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
| 15 | 9, 14 | sylibr 234 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
| 16 | 15 | ne0d 4322 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {crab 3419 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4887 SAlgcsalg 46256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4888 df-salg 46257 |
| This theorem is referenced by: salgencl 46280 salgenuni 46285 |
| Copyright terms: Public domain | W3C validator |