![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenn0 | Structured version Visualization version GIF version |
Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgenn0 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7102 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
2 | pwsal 41052 | . . . . 5 ⊢ (∪ 𝑋 ∈ V → 𝒫 ∪ 𝑋 ∈ SAlg) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ SAlg) |
4 | unipw 5046 | . . . . . 6 ⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋) |
6 | pwuni 4610 | . . . . . 6 ⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋) |
8 | 5, 7 | jca 501 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋)) |
9 | 3, 8 | jca 501 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
10 | unieq 4582 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ∪ 𝑠 = ∪ 𝒫 ∪ 𝑋) | |
11 | 10 | eqeq1d 2773 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋)) |
12 | sseq2 3776 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋)) | |
13 | 11, 12 | anbi12d 616 | . . . 4 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
14 | 13 | elrab 3515 | . . 3 ⊢ (𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
15 | 9, 14 | sylibr 224 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
16 | ne0i 4069 | . 2 ⊢ (𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) | |
17 | 15, 16 | syl 17 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 {crab 3065 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 𝒫 cpw 4297 ∪ cuni 4574 SAlgcsalg 41045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-pw 4299 df-sn 4317 df-pr 4319 df-uni 4575 df-salg 41046 |
This theorem is referenced by: salgencl 41067 salgenuni 41072 |
Copyright terms: Public domain | W3C validator |