Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenn0 | Structured version Visualization version GIF version |
Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgenn0 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7593 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
2 | pwsal 43856 | . . . . 5 ⊢ (∪ 𝑋 ∈ V → 𝒫 ∪ 𝑋 ∈ SAlg) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ SAlg) |
4 | unipw 5366 | . . . . . 6 ⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋) |
6 | pwuni 4878 | . . . . . 6 ⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋) |
8 | 5, 7 | jca 512 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋)) |
9 | 3, 8 | jca 512 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
10 | unieq 4850 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ∪ 𝑠 = ∪ 𝒫 ∪ 𝑋) | |
11 | 10 | eqeq1d 2740 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋)) |
12 | sseq2 3947 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋)) | |
13 | 11, 12 | anbi12d 631 | . . . 4 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
14 | 13 | elrab 3624 | . . 3 ⊢ (𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
15 | 9, 14 | sylibr 233 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
16 | 15 | ne0d 4269 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 SAlgcsalg 43849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-salg 43850 |
This theorem is referenced by: salgencl 43871 salgenuni 43876 |
Copyright terms: Public domain | W3C validator |