Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenn0 Structured version   Visualization version   GIF version

Theorem salgenn0 42621
Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenn0 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenn0
StepHypRef Expression
1 uniexg 7468 . . . . 5 (𝑋𝑉 𝑋 ∈ V)
2 pwsal 42607 . . . . 5 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
31, 2syl 17 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
4 unipw 5345 . . . . . 6 𝒫 𝑋 = 𝑋
54a1i 11 . . . . 5 (𝑋𝑉 𝒫 𝑋 = 𝑋)
6 pwuni 4877 . . . . . 6 𝑋 ⊆ 𝒫 𝑋
76a1i 11 . . . . 5 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
85, 7jca 514 . . . 4 (𝑋𝑉 → ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋))
93, 8jca 514 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
10 unieq 4851 . . . . . 6 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
1110eqeq1d 2825 . . . . 5 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
12 sseq2 3995 . . . . 5 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
1311, 12anbi12d 632 . . . 4 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
1413elrab 3682 . . 3 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
159, 14sylibr 236 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
1615ne0d 4303 1 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  {crab 3144  Vcvv 3496  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840  SAlgcsalg 42600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-pw 4543  df-sn 4570  df-pr 4572  df-uni 4841  df-salg 42601
This theorem is referenced by:  salgencl  42622  salgenuni  42627
  Copyright terms: Public domain W3C validator