Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenn0 Structured version   Visualization version   GIF version

Theorem salgenn0 43870
Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenn0 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenn0
StepHypRef Expression
1 uniexg 7593 . . . . 5 (𝑋𝑉 𝑋 ∈ V)
2 pwsal 43856 . . . . 5 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
31, 2syl 17 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
4 unipw 5366 . . . . . 6 𝒫 𝑋 = 𝑋
54a1i 11 . . . . 5 (𝑋𝑉 𝒫 𝑋 = 𝑋)
6 pwuni 4878 . . . . . 6 𝑋 ⊆ 𝒫 𝑋
76a1i 11 . . . . 5 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
85, 7jca 512 . . . 4 (𝑋𝑉 → ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋))
93, 8jca 512 . . 3 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
10 unieq 4850 . . . . . 6 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
1110eqeq1d 2740 . . . . 5 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
12 sseq2 3947 . . . . 5 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
1311, 12anbi12d 631 . . . 4 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
1413elrab 3624 . . 3 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
159, 14sylibr 233 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
1615ne0d 4269 1 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562  df-pr 4564  df-uni 4840  df-salg 43850
This theorem is referenced by:  salgencl  43871  salgenuni  43876
  Copyright terms: Public domain W3C validator