Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenn0 | Structured version Visualization version GIF version |
Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgenn0 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7571 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V) | |
2 | pwsal 43746 | . . . . 5 ⊢ (∪ 𝑋 ∈ V → 𝒫 ∪ 𝑋 ∈ SAlg) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ SAlg) |
4 | unipw 5360 | . . . . . 6 ⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋) |
6 | pwuni 4875 | . . . . . 6 ⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋) |
8 | 5, 7 | jca 511 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋)) |
9 | 3, 8 | jca 511 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
10 | unieq 4847 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ∪ 𝑠 = ∪ 𝒫 ∪ 𝑋) | |
11 | 10 | eqeq1d 2740 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋)) |
12 | sseq2 3943 | . . . . 5 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋)) | |
13 | 11, 12 | anbi12d 630 | . . . 4 ⊢ (𝑠 = 𝒫 ∪ 𝑋 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
14 | 13 | elrab 3617 | . . 3 ⊢ (𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝒫 ∪ 𝑋 ∈ SAlg ∧ (∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋))) |
15 | 9, 14 | sylibr 233 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
16 | 15 | ne0d 4266 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-salg 43740 |
This theorem is referenced by: salgencl 43761 salgenuni 43766 |
Copyright terms: Public domain | W3C validator |