Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenuni Structured version   Visualization version   GIF version

Theorem salgenuni 46445
Description: The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgenuni.x (𝜑𝑋𝑉)
salgenuni.s 𝑆 = (SalGen‘𝑋)
salgenuni.u 𝑈 = 𝑋
Assertion
Ref Expression
salgenuni (𝜑 𝑆 = 𝑈)

Proof of Theorem salgenuni
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 salgenuni.s . . . . 5 𝑆 = (SalGen‘𝑋)
21a1i 11 . . . 4 (𝜑𝑆 = (SalGen‘𝑋))
3 salgenuni.x . . . . 5 (𝜑𝑋𝑉)
4 salgenval 46429 . . . . 5 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
53, 4syl 17 . . . 4 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
62, 5eqtrd 2766 . . 3 (𝜑𝑆 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
76unieqd 4869 . 2 (𝜑 𝑆 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
8 ssrab2 4027 . . . 4 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ SAlg
98a1i 11 . . 3 (𝜑 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ SAlg)
10 salgenn0 46439 . . . 4 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
113, 10syl 17 . . 3 (𝜑 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
12 unieq 4867 . . . . . . . . . 10 (𝑠 = 𝑡 𝑠 = 𝑡)
1312eqeq1d 2733 . . . . . . . . 9 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
14 sseq2 3956 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
1513, 14anbi12d 632 . . . . . . . 8 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
1615elrab 3642 . . . . . . 7 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
1716biimpi 216 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
1817simprld 771 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑡 = 𝑋)
19 salgenuni.u . . . . . . 7 𝑈 = 𝑋
2019eqcomi 2740 . . . . . 6 𝑋 = 𝑈
2120a1i 11 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋 = 𝑈)
2218, 21eqtrd 2766 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑡 = 𝑈)
2322adantl 481 . . 3 ((𝜑𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑡 = 𝑈)
249, 11, 23intsaluni 46437 . 2 (𝜑 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} = 𝑈)
257, 24eqtrd 2766 1 (𝜑 𝑆 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  wss 3897  c0 4280   cuni 4856   cint 4895  cfv 6481  SAlgcsalg 46416  SalGencsalgen 46420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-salg 46417  df-salgen 46421
This theorem is referenced by:  unisalgen  46448  dfsalgen2  46449
  Copyright terms: Public domain W3C validator