Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenuni Structured version   Visualization version   GIF version

Theorem salgenuni 46258
Description: The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgenuni.x (𝜑𝑋𝑉)
salgenuni.s 𝑆 = (SalGen‘𝑋)
salgenuni.u 𝑈 = 𝑋
Assertion
Ref Expression
salgenuni (𝜑 𝑆 = 𝑈)

Proof of Theorem salgenuni
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 salgenuni.s . . . . 5 𝑆 = (SalGen‘𝑋)
21a1i 11 . . . 4 (𝜑𝑆 = (SalGen‘𝑋))
3 salgenuni.x . . . . 5 (𝜑𝑋𝑉)
4 salgenval 46242 . . . . 5 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
53, 4syl 17 . . . 4 (𝜑 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
62, 5eqtrd 2780 . . 3 (𝜑𝑆 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
76unieqd 4944 . 2 (𝜑 𝑆 = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
8 ssrab2 4103 . . . 4 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ SAlg
98a1i 11 . . 3 (𝜑 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ⊆ SAlg)
10 salgenn0 46252 . . . 4 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
113, 10syl 17 . . 3 (𝜑 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
12 unieq 4942 . . . . . . . . . 10 (𝑠 = 𝑡 𝑠 = 𝑡)
1312eqeq1d 2742 . . . . . . . . 9 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
14 sseq2 4035 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
1513, 14anbi12d 631 . . . . . . . 8 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
1615elrab 3708 . . . . . . 7 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
1716biimpi 216 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
1817simprld 771 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑡 = 𝑋)
19 salgenuni.u . . . . . . 7 𝑈 = 𝑋
2019eqcomi 2749 . . . . . 6 𝑋 = 𝑈
2120a1i 11 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋 = 𝑈)
2218, 21eqtrd 2780 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑡 = 𝑈)
2322adantl 481 . . 3 ((𝜑𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}) → 𝑡 = 𝑈)
249, 11, 23intsaluni 46250 . 2 (𝜑 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} = 𝑈)
257, 24eqtrd 2780 1 (𝜑 𝑆 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  wss 3976  c0 4352   cuni 4931   cint 4970  cfv 6573  SAlgcsalg 46229  SalGencsalgen 46233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-salg 46230  df-salgen 46234
This theorem is referenced by:  unisalgen  46261  dfsalgen2  46262
  Copyright terms: Public domain W3C validator