Proof of Theorem sbcie3s
Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. 2
⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) ∈ V) |
2 | | fvexd 6771 |
. . 3
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝐹‘𝑤) ∈ V) |
3 | | fvexd 6771 |
. . . 4
⊢ (((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) → (𝐺‘𝑤) ∈ V) |
4 | | simpllr 772 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = (𝐸‘𝑤)) |
5 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) |
6 | 5 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐸‘𝑤) = (𝐸‘𝑊)) |
7 | 4, 6 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = (𝐸‘𝑊)) |
8 | | sbcie3s.a |
. . . . . . 7
⊢ 𝐴 = (𝐸‘𝑊) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = 𝐴) |
10 | | simplr 765 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = (𝐹‘𝑤)) |
11 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) |
12 | 11 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐹‘𝑤) = (𝐹‘𝑊)) |
13 | 10, 12 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = (𝐹‘𝑊)) |
14 | | sbcie3s.b |
. . . . . . 7
⊢ 𝐵 = (𝐹‘𝑊) |
15 | 13, 14 | eqtr4di 2797 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = 𝐵) |
16 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = (𝐺‘𝑤)) |
17 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐺‘𝑤) = (𝐺‘𝑊)) |
18 | 17 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐺‘𝑤) = (𝐺‘𝑊)) |
19 | 16, 18 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = (𝐺‘𝑊)) |
20 | | sbcie3s.c |
. . . . . . 7
⊢ 𝐶 = (𝐺‘𝑊) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = 𝐶) |
22 | | sbcie3s.1 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶) → (𝜑 ↔ 𝜓)) |
23 | 9, 15, 21, 22 | syl3anc 1369 |
. . . . 5
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝜑 ↔ 𝜓)) |
24 | 23 | bicomd 222 |
. . . 4
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝜓 ↔ 𝜑)) |
25 | 3, 24 | sbcied 3756 |
. . 3
⊢ (((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) → ([(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |
26 | 2, 25 | sbcied 3756 |
. 2
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → ([(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |
27 | 1, 26 | sbcied 3756 |
1
⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |