![]() |
Metamath
Proof Explorer Theorem List (p. 171 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30171) |
![]() (30172-31694) |
![]() (31695-47852) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | modxai 17001 | Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
โข ๐ โ โ & โข ๐ด โ โ & โข ๐ต โ โ0 & โข ๐ท โ โค & โข ๐พ โ โ0 & โข ๐ โ โ0 & โข ๐ถ โ โ0 & โข ๐ฟ โ โ0 & โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) & โข ((๐ดโ๐ถ) mod ๐) = (๐ฟ mod ๐) & โข (๐ต + ๐ถ) = ๐ธ & โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐ฟ) โ โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) | ||
Theorem | mod2xi 17002 | Double exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
โข ๐ โ โ & โข ๐ด โ โ & โข ๐ต โ โ0 & โข ๐ท โ โค & โข ๐พ โ โ0 & โข ๐ โ โ0 & โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) & โข (2 ยท ๐ต) = ๐ธ & โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐พ) โ โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) | ||
Theorem | modxp1i 17003 | Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) |
โข ๐ โ โ & โข ๐ด โ โ & โข ๐ต โ โ0 & โข ๐ท โ โค & โข ๐พ โ โ0 & โข ๐ โ โ0 & โข ((๐ดโ๐ต) mod ๐) = (๐พ mod ๐) & โข (๐ต + 1) = ๐ธ & โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐ด) โ โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) | ||
Theorem | mod2xnegi 17004 | Version of mod2xi 17002 with a negative mod value. (Contributed by Mario Carneiro, 21-Feb-2014.) |
โข ๐ด โ โ & โข ๐ต โ โ0 & โข ๐ท โ โค & โข ๐พ โ โ & โข ๐ โ โ0 & โข ๐ฟ โ โ0 & โข ((๐ดโ๐ต) mod ๐) = (๐ฟ mod ๐) & โข (2 ยท ๐ต) = ๐ธ & โข (๐ฟ + ๐พ) = ๐ & โข ((๐ท ยท ๐) + ๐) = (๐พ ยท ๐พ) โ โข ((๐ดโ๐ธ) mod ๐) = (๐ mod ๐) | ||
Theorem | modsubi 17005 | Subtract from within a mod calculation. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ๐ โ โ & โข ๐ด โ โ & โข ๐ต โ โ0 & โข ๐ โ โ0 & โข (๐ด mod ๐) = (๐พ mod ๐) & โข (๐ + ๐ต) = ๐พ โ โข ((๐ด โ ๐ต) mod ๐) = (๐ mod ๐) | ||
Theorem | gcdi 17006 | Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.) |
โข ๐พ โ โ0 & โข ๐ โ โ0 & โข ๐ โ โ0 & โข (๐ gcd ๐ ) = ๐บ & โข ((๐พ ยท ๐) + ๐ ) = ๐ โ โข (๐ gcd ๐) = ๐บ | ||
Theorem | gcdmodi 17007 | Calculate a GCD via Euclid's algorithm. Theorem 5.6 in [ApostolNT] p. 109. (Contributed by Mario Carneiro, 19-Feb-2014.) |
โข ๐พ โ โ0 & โข ๐ โ โ0 & โข ๐ โ โ & โข (๐พ mod ๐) = (๐ mod ๐) & โข (๐ gcd ๐ ) = ๐บ โ โข (๐พ gcd ๐) = ๐บ | ||
Theorem | decexp2 17008 | Calculate a power of two. (Contributed by Mario Carneiro, 19-Feb-2014.) |
โข ๐ โ โ0 & โข (๐ + 2) = ๐ โ โข ((4 ยท (2โ๐)) + 0) = (2โ๐) | ||
Theorem | numexp0 17009 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
โข ๐ด โ โ0 โ โข (๐ดโ0) = 1 | ||
Theorem | numexp1 17010 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
โข ๐ด โ โ0 โ โข (๐ดโ1) = ๐ด | ||
Theorem | numexpp1 17011 | Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
โข ๐ด โ โ0 & โข ๐ โ โ0 & โข (๐ + 1) = ๐ & โข ((๐ดโ๐) ยท ๐ด) = ๐ถ โ โข (๐ดโ๐) = ๐ถ | ||
Theorem | numexp2x 17012 | Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.) |
โข ๐ด โ โ0 & โข ๐ โ โ0 & โข (2 ยท ๐) = ๐ & โข (๐ดโ๐) = ๐ท & โข (๐ท ยท ๐ท) = ๐ถ โ โข (๐ดโ๐) = ๐ถ | ||
Theorem | decsplit0b 17013 | Split a decimal number into two parts. Base case: ๐ = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
โข ๐ด โ โ0 โ โข ((๐ด ยท (;10โ0)) + ๐ต) = (๐ด + ๐ต) | ||
Theorem | decsplit0 17014 | Split a decimal number into two parts. Base case: ๐ = 0. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
โข ๐ด โ โ0 โ โข ((๐ด ยท (;10โ0)) + 0) = ๐ด | ||
Theorem | decsplit1 17015 | Split a decimal number into two parts. Base case: ๐ = 1. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
โข ๐ด โ โ0 โ โข ((๐ด ยท (;10โ1)) + ๐ต) = ;๐ด๐ต | ||
Theorem | decsplit 17016 | Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 8-Sep-2021.) |
โข ๐ด โ โ0 & โข ๐ต โ โ0 & โข ๐ท โ โ0 & โข ๐ โ โ0 & โข (๐ + 1) = ๐ & โข ((๐ด ยท (;10โ๐)) + ๐ต) = ๐ถ โ โข ((๐ด ยท (;10โ๐)) + ;๐ต๐ท) = ;๐ถ๐ท | ||
Theorem | karatsuba 17017 | The Karatsuba multiplication algorithm. If ๐ and ๐ are decomposed into two groups of digits of length ๐ (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then ๐๐ can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 12742. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.) |
โข ๐ด โ โ0 & โข ๐ต โ โ0 & โข ๐ถ โ โ0 & โข ๐ท โ โ0 & โข ๐ โ โ0 & โข ๐ โ โ0 & โข (๐ด ยท ๐ถ) = ๐ & โข (๐ต ยท ๐ท) = ๐ & โข ((๐ด + ๐ต) ยท (๐ถ + ๐ท)) = ((๐ + ๐) + ๐) & โข ((๐ด ยท (;10โ๐)) + ๐ต) = ๐ & โข ((๐ถ ยท (;10โ๐)) + ๐ท) = ๐ & โข ((๐ ยท (;10โ๐)) + ๐) = ๐ & โข ((๐ ยท (;10โ๐)) + ๐) = ๐ โ โข (๐ ยท ๐) = ๐ | ||
Theorem | 2exp4 17018 | Two to the fourth power is 16. (Contributed by Mario Carneiro, 20-Apr-2015.) |
โข (2โ4) = ;16 | ||
Theorem | 2exp5 17019 | Two to the fifth power is 32. (Contributed by AV, 16-Aug-2021.) |
โข (2โ5) = ;32 | ||
Theorem | 2exp6 17020 | Two to the sixth power is 64. (Contributed by Mario Carneiro, 20-Apr-2015.) (Proof shortened by OpenAI, 25-Mar-2020.) |
โข (2โ6) = ;64 | ||
Theorem | 2exp7 17021 | Two to the seventh power is 128. (Contributed by AV, 16-Aug-2021.) |
โข (2โ7) = ;;128 | ||
Theorem | 2exp8 17022 | Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015.) |
โข (2โ8) = ;;256 | ||
Theorem | 2exp11 17023 | Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
โข (2โ;11) = ;;;2048 | ||
Theorem | 2exp16 17024 | Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015.) |
โข (2โ;16) = ;;;;65536 | ||
Theorem | 3exp3 17025 | Three to the third power is 27. (Contributed by Mario Carneiro, 20-Apr-2015.) |
โข (3โ3) = ;27 | ||
Theorem | 2expltfac 17026 | The factorial grows faster than two to the power ๐. (Contributed by Mario Carneiro, 15-Sep-2016.) |
โข (๐ โ (โคโฅโ4) โ (2โ๐) < (!โ๐)) | ||
Theorem | cshwsidrepsw 17027 | If cyclically shifting a word of length being a prime number by a number of positions which is not divisible by the prime number results in the word itself, the word is a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
โข ((๐ โ Word ๐ โง (โฏโ๐) โ โ) โ ((๐ฟ โ โค โง (๐ฟ mod (โฏโ๐)) โ 0 โง (๐ cyclShift ๐ฟ) = ๐) โ ๐ = ((๐โ0) repeatS (โฏโ๐)))) | ||
Theorem | cshwsidrepswmod0 17028 | If cyclically shifting a word of length being a prime number results in the word itself, the shift must be either by 0 (modulo the length of the word) or the word must be a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
โข ((๐ โ Word ๐ โง (โฏโ๐) โ โ โง ๐ฟ โ โค) โ ((๐ cyclShift ๐ฟ) = ๐ โ ((๐ฟ mod (โฏโ๐)) = 0 โจ ๐ = ((๐โ0) repeatS (โฏโ๐))))) | ||
Theorem | cshwshashlem1 17029* | If cyclically shifting a word of length being a prime number not consisting of identical symbols by at least one position (and not by as many positions as the length of the word), the result will not be the word itself. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Revised by AV, 10-Nov-2018.) |
โข (๐ โ (๐ โ Word ๐ โง (โฏโ๐) โ โ)) โ โข ((๐ โง โ๐ โ (0..^(โฏโ๐))(๐โ๐) โ (๐โ0) โง ๐ฟ โ (1..^(โฏโ๐))) โ (๐ cyclShift ๐ฟ) โ ๐) | ||
Theorem | cshwshashlem2 17030* | If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
โข (๐ โ (๐ โ Word ๐ โง (โฏโ๐) โ โ)) โ โข ((๐ โง โ๐ โ (0..^(โฏโ๐))(๐โ๐) โ (๐โ0)) โ ((๐ฟ โ (0..^(โฏโ๐)) โง ๐พ โ (0..^(โฏโ๐)) โง ๐พ < ๐ฟ) โ (๐ cyclShift ๐ฟ) โ (๐ cyclShift ๐พ))) | ||
Theorem | cshwshashlem3 17031* | If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
โข (๐ โ (๐ โ Word ๐ โง (โฏโ๐) โ โ)) โ โข ((๐ โง โ๐ โ (0..^(โฏโ๐))(๐โ๐) โ (๐โ0)) โ ((๐ฟ โ (0..^(โฏโ๐)) โง ๐พ โ (0..^(โฏโ๐)) โง ๐พ โ ๐ฟ) โ (๐ cyclShift ๐ฟ) โ (๐ cyclShift ๐พ))) | ||
Theorem | cshwsdisj 17032* | The singletons resulting by cyclically shifting a given word of length being a prime number and not consisting of identical symbols is a disjoint collection. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.) |
โข (๐ โ (๐ โ Word ๐ โง (โฏโ๐) โ โ)) โ โข ((๐ โง โ๐ โ (0..^(โฏโ๐))(๐โ๐) โ (๐โ0)) โ Disj ๐ โ (0..^(โฏโ๐)){(๐ cyclShift ๐)}) | ||
Theorem | cshwsiun 17033* | The set of (different!) words resulting by cyclically shifting a given word is an indexed union. (Contributed by AV, 19-May-2018.) (Revised by AV, 8-Jun-2018.) (Proof shortened by AV, 8-Nov-2018.) |
โข ๐ = {๐ค โ Word ๐ โฃ โ๐ โ (0..^(โฏโ๐))(๐ cyclShift ๐) = ๐ค} โ โข (๐ โ Word ๐ โ ๐ = โช ๐ โ (0..^(โฏโ๐)){(๐ cyclShift ๐)}) | ||
Theorem | cshwsex 17034* | The class of (different!) words resulting by cyclically shifting a given word is a set. (Contributed by AV, 8-Jun-2018.) (Revised by AV, 8-Nov-2018.) |
โข ๐ = {๐ค โ Word ๐ โฃ โ๐ โ (0..^(โฏโ๐))(๐ cyclShift ๐) = ๐ค} โ โข (๐ โ Word ๐ โ ๐ โ V) | ||
Theorem | cshws0 17035* | The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.) |
โข ๐ = {๐ค โ Word ๐ โฃ โ๐ โ (0..^(โฏโ๐))(๐ cyclShift ๐) = ๐ค} โ โข (๐ = โ โ (โฏโ๐) = 0) | ||
Theorem | cshwrepswhash1 17036* | The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.) |
โข ๐ = {๐ค โ Word ๐ โฃ โ๐ โ (0..^(โฏโ๐))(๐ cyclShift ๐) = ๐ค} โ โข ((๐ด โ ๐ โง ๐ โ โ โง ๐ = (๐ด repeatS ๐)) โ (โฏโ๐) = 1) | ||
Theorem | cshwshashnsame 17037* | If a word (not consisting of identical symbols) has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
โข ๐ = {๐ค โ Word ๐ โฃ โ๐ โ (0..^(โฏโ๐))(๐ cyclShift ๐) = ๐ค} โ โข ((๐ โ Word ๐ โง (โฏโ๐) โ โ) โ (โ๐ โ (0..^(โฏโ๐))(๐โ๐) โ (๐โ0) โ (โฏโ๐) = (โฏโ๐))) | ||
Theorem | cshwshash 17038* | If a word has a length being a prime number, the size of the set of (different!) words resulting by cyclically shifting the original word equals the length of the original word or 1. (Contributed by AV, 19-May-2018.) (Revised by AV, 10-Nov-2018.) |
โข ๐ = {๐ค โ Word ๐ โฃ โ๐ โ (0..^(โฏโ๐))(๐ cyclShift ๐) = ๐ค} โ โข ((๐ โ Word ๐ โง (โฏโ๐) โ โ) โ ((โฏโ๐) = (โฏโ๐) โจ (โฏโ๐) = 1)) | ||
Theorem | prmlem0 17039* | Lemma for prmlem1 17041 and prmlem2 17053. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ((ยฌ 2 โฅ ๐ โง ๐ฅ โ (โคโฅโ๐)) โ ((๐ฅ โ (โ โ {2}) โง (๐ฅโ2) โค ๐) โ ยฌ ๐ฅ โฅ ๐)) & โข (๐พ โ โ โ ยฌ ๐พ โฅ ๐) & โข (๐พ + 2) = ๐ โ โข ((ยฌ 2 โฅ ๐พ โง ๐ฅ โ (โคโฅโ๐พ)) โ ((๐ฅ โ (โ โ {2}) โง (๐ฅโ2) โค ๐) โ ยฌ ๐ฅ โฅ ๐)) | ||
Theorem | prmlem1a 17040* | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ๐ โ โ & โข 1 < ๐ & โข ยฌ 2 โฅ ๐ & โข ยฌ 3 โฅ ๐ & โข ((ยฌ 2 โฅ 5 โง ๐ฅ โ (โคโฅโ5)) โ ((๐ฅ โ (โ โ {2}) โง (๐ฅโ2) โค ๐) โ ยฌ ๐ฅ โฅ ๐)) โ โข ๐ โ โ | ||
Theorem | prmlem1 17041 | A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ๐ โ โ & โข 1 < ๐ & โข ยฌ 2 โฅ ๐ & โข ยฌ 3 โฅ ๐ & โข ๐ < ;25 โ โข ๐ โ โ | ||
Theorem | 5prm 17042 | 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข 5 โ โ | ||
Theorem | 6nprm 17043 | 6 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ยฌ 6 โ โ | ||
Theorem | 7prm 17044 | 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข 7 โ โ | ||
Theorem | 8nprm 17045 | 8 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ยฌ 8 โ โ | ||
Theorem | 9nprm 17046 | 9 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
โข ยฌ 9 โ โ | ||
Theorem | 10nprm 17047 | 10 is not a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
โข ยฌ ;10 โ โ | ||
Theorem | 11prm 17048 | 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข ;11 โ โ | ||
Theorem | 13prm 17049 | 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข ;13 โ โ | ||
Theorem | 17prm 17050 | 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข ;17 โ โ | ||
Theorem | 19prm 17051 | 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข ;19 โ โ | ||
Theorem | 23prm 17052 | 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข ;23 โ โ | ||
Theorem | prmlem2 17053 |
Our last proving session got as far as 25 because we started with the
two "bootstrap" primes 2 and 3, and the next prime is 5, so
knowing that
2 and 3 are prime and 4 is not allows to cover the numbers less than
5โ2 = 25. Additionally, nonprimes are
"easy", so we can extend
this range of known prime/nonprimes all the way until 29, which is the
first prime larger than 25. Thus, in this lemma we extend another
blanket out to 29โ2 = 841, from which we
can prove even more
primes. If we wanted, we could keep doing this, but the goal is
Bertrand's postulate, and for that we only need a few large primes - we
don't need to find them all, as we have been doing thus far. So after
this blanket runs out, we'll have to switch to another method (see
1259prm 17069).
As a side note, you can see the pattern of the primes in the indentation pattern of this lemma! (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ๐ โ โ & โข ๐ < ;;841 & โข 1 < ๐ & โข ยฌ 2 โฅ ๐ & โข ยฌ 3 โฅ ๐ & โข ยฌ 5 โฅ ๐ & โข ยฌ 7 โฅ ๐ & โข ยฌ ;11 โฅ ๐ & โข ยฌ ;13 โฅ ๐ & โข ยฌ ;17 โฅ ๐ & โข ยฌ ;19 โฅ ๐ & โข ยฌ ;23 โฅ ๐ โ โข ๐ โ โ | ||
Theorem | 37prm 17054 | 37 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;37 โ โ | ||
Theorem | 43prm 17055 | 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;43 โ โ | ||
Theorem | 83prm 17056 | 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;83 โ โ | ||
Theorem | 139prm 17057 | 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;;139 โ โ | ||
Theorem | 163prm 17058 | 163 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;;163 โ โ | ||
Theorem | 317prm 17059 | 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;;317 โ โ | ||
Theorem | 631prm 17060 | 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ;;631 โ โ | ||
Theorem | prmo4 17061 | The primorial of 4. (Contributed by AV, 28-Aug-2020.) |
โข (#pโ4) = 6 | ||
Theorem | prmo5 17062 | The primorial of 5. (Contributed by AV, 28-Aug-2020.) |
โข (#pโ5) = ;30 | ||
Theorem | prmo6 17063 | The primorial of 6. (Contributed by AV, 28-Aug-2020.) |
โข (#pโ6) = ;30 | ||
Theorem | 1259lem1 17064 | Lemma for 1259prm 17069. Calculate a power mod. In decimal, we calculate 2โ16 = 52๐ + 68โก68 and 2โ17โก68 ยท 2 = 136 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;1259 โ โข ((2โ;17) mod ๐) = (;;136 mod ๐) | ||
Theorem | 1259lem2 17065 | Lemma for 1259prm 17069. Calculate a power mod. In decimal, we calculate 2โ34 = (2โ17)โ2โก136โ2โก14๐ + 870. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
โข ๐ = ;;;1259 โ โข ((2โ;34) mod ๐) = (;;870 mod ๐) | ||
Theorem | 1259lem3 17066 | Lemma for 1259prm 17069. Calculate a power mod. In decimal, we calculate 2โ38 = 2โ34 ยท 2โ4โก870 ยท 16 = 11๐ + 71 and 2โ76 = (2โ34)โ2โก71โ2 = 4๐ + 5โก5. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;1259 โ โข ((2โ;76) mod ๐) = (5 mod ๐) | ||
Theorem | 1259lem4 17067 | Lemma for 1259prm 17069. Calculate a power mod. In decimal, we calculate 2โ306 = (2โ76)โ4 ยท 4โก5โ4 ยท 4 = 2๐ โ 18, 2โ612 = (2โ306)โ2โก18โ2 = 324, 2โ629 = 2โ612 ยท 2โ17โก324 ยท 136 = 35๐ โ 1 and finally 2โ(๐ โ 1) = (2โ629)โ2โก1โ2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;1259 โ โข ((2โ(๐ โ 1)) mod ๐) = (1 mod ๐) | ||
Theorem | 1259lem5 17068 | Lemma for 1259prm 17069. Calculate the GCD of 2โ34 โ 1โก869 with ๐ = 1259. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
โข ๐ = ;;;1259 โ โข (((2โ;34) โ 1) gcd ๐) = 1 | ||
Theorem | 1259prm 17069 | 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ๐ = ;;;1259 โ โข ๐ โ โ | ||
Theorem | 2503lem1 17070 | Lemma for 2503prm 17073. Calculate a power mod. In decimal, we calculate 2โ18 = 512โ2 = 104๐ + 1832โก1832. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;2503 โ โข ((2โ;18) mod ๐) = (;;;1832 mod ๐) | ||
Theorem | 2503lem2 17071 | Lemma for 2503prm 17073. Calculate a power mod. We calculate 2โ19 = 2โ18 ยท 2โก1832 ยท 2 = ๐ + 1161, 2โ38 = (2โ19)โ2โก1161โ2 = 538๐ + 1307, 2โ39 = 2โ38 ยท 2โก1307 ยท 2 = ๐ + 111, 2โ78 = (2โ39)โ2โก111โ2 = 5๐ โ 194, 2โ156 = (2โ78)โ2โก194โ2 = 15๐ + 91, 2โ312 = (2โ156)โ2โก91โ2 = 3๐ + 772, 2โ624 = (2โ312)โ2โก772โ2 = 238๐ + 270, 2โ1248 = (2โ624)โ2โก270โ2 = 29๐ + 313, 2โ1251 = 2โ1248 ยท 8โก313 ยท 8 = ๐ + 1 and finally 2โ(๐ โ 1) = (2โ1251)โ2โก1โ2 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;2503 โ โข ((2โ(๐ โ 1)) mod ๐) = (1 mod ๐) | ||
Theorem | 2503lem3 17072 | Lemma for 2503prm 17073. Calculate the GCD of 2โ18 โ 1โก1831 with ๐ = 2503. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 15-Sep-2021.) |
โข ๐ = ;;;2503 โ โข (((2โ;18) โ 1) gcd ๐) = 1 | ||
Theorem | 2503prm 17073 | 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
โข ๐ = ;;;2503 โ โข ๐ โ โ | ||
Theorem | 4001lem1 17074 | Lemma for 4001prm 17078. Calculate a power mod. In decimal, we calculate 2โ12 = 4096 = ๐ + 95, 2โ24 = (2โ12)โ2โก95โ2 = 2๐ + 1023, 2โ25 = 2โ24 ยท 2โก1023 ยท 2 = 2046, 2โ50 = (2โ25)โ2โก2046โ2 = 1046๐ + 1070, 2โ100 = (2โ50)โ2โก1070โ2 = 286๐ + 614 and 2โ200 = (2โ100)โ2โก614โ2 = 94๐ + 902 โก902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;4001 โ โข ((2โ;;200) mod ๐) = (;;902 mod ๐) | ||
Theorem | 4001lem2 17075 | Lemma for 4001prm 17078. Calculate a power mod. In decimal, we calculate 2โ400 = (2โ200)โ2โก902โ2 = 203๐ + 1401 and 2โ800 = (2โ400)โ2โก1401โ2 = 490๐ + 2311 โก2311. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;4001 โ โข ((2โ;;800) mod ๐) = (;;;2311 mod ๐) | ||
Theorem | 4001lem3 17076 | Lemma for 4001prm 17078. Calculate a power mod. In decimal, we calculate 2โ1000 = 2โ800 ยท 2โ200โก2311 ยท 902 = 521๐ + 1 and finally 2โ(๐ โ 1) = (2โ1000)โ4โก1โ4 = 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;4001 โ โข ((2โ(๐ โ 1)) mod ๐) = (1 mod ๐) | ||
Theorem | 4001lem4 17077 | Lemma for 4001prm 17078. Calculate the GCD of 2โ800 โ 1โก2310 with ๐ = 4001. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;4001 โ โข (((2โ;;800) โ 1) gcd ๐) = 1 | ||
Theorem | 4001prm 17078 | 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.) |
โข ๐ = ;;;4001 โ โข ๐ โ โ | ||
An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit. An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of โ. The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 17130 and strfv 17137. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. For example, as noted in ndxid 17130, we can refer to a specific poset with base set ๐ต and order relation ๐ฟ using the extensible structure {โจ(Baseโndx), ๐ตโฉ, โจ(leโndx), ๐ฟโฉ} rather than {โจ1, ๐ตโฉ, โจ;10, ๐ฟโฉ}. See section header comment mmtheorems.html#cnx 17130 for more details on numeric indices versus the structure component extractors. There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an ๐ is a ๐ via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach. To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures โพs as defined in df-ress 17174. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range (like Ring), defining a function using the base set and applying that (like TopGrp), or explicitly truncating the slot before use (like MetSp). For example, the unital ring of integers โคring is defined in df-zring 21018 as simply โคring = (โfld โพs โค). This can be similarly done for all other subsets of โ, which has all the structure we can show applies to it, and this all comes "for free". Should we come up with some new structure in the future that we wish โ to inherit, then we change the definition of โfld, reprove all the slot extraction theorems, add a new one, and that's it. None of the other downstream theorems have to change. Note that the construct of df-prds 17393 addresses a different situation. It is not possible to have SubGrp and SubRing be the same thing because they produce different outputs on the same input. The subgroups of an extensible structure treated as a group are not the same as the subrings of that same structure. With df-prds 17393 it can actually reasonably perform the task, that is, being the product group given a family of groups, while also being the product ring given a family of rings. There is no contradiction here because the group part of a product ring is a product group. There is also a general theory of "substructure algebras", in the form of df-mre 17530 and df-acs 17533. SubGrp is a Moore collection, as is SubRing, SubRng and many other substructure collections. But it is not useful for picking out a particular collection of interest; SubRing and SubGrp still need to be defined and they are distinct --- nothing is going to select these definitions for us. Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, โพs would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization. | ||
Syntax | cstr 17079 | Extend class notation with the class of structures with components numbered below ๐ด. |
class Struct | ||
Definition | df-struct 17080* |
Define a structure with components in ๐...๐. This is not a
requirement for groups, posets, etc., but it is a useful assumption for
component extraction theorems.
As mentioned in the section header, an "extensible structure should be implemented as a function (a set of ordered pairs)". The current definition, however, is less restrictive: it allows for classes which contain the empty set โ to be extensible structures. Because of 0nelfun 6567, such classes cannot be functions. Without the empty set, however, a structure must be a function, see structn0fun 17084: ๐น Struct ๐ โ Fun (๐น โ {โ }). Allowing an extensible structure to contain the empty set ensures that expressions like {โจ๐ด, ๐ตโฉ, โจ๐ถ, ๐ทโฉ} are structures without asserting or implying that ๐ด, ๐ต, ๐ถ and ๐ท are sets (if ๐ด or ๐ต is a proper class, then โจ๐ด, ๐ตโฉ = โ , see opprc 4897). This is used critically in strle1 17091, strle2 17092, strle3 17093 and strleun 17090 to avoid sethood hypotheses on the "payload" sets: without this, ipsstr 17281 and theorems like it will have many sethood assumptions, and may not even be usable in the empty context. Instead, the sethood assumption is deferred until it is actually needed, e.g., ipsbase 17282, which requires that the base set be a set but not any of the other components. Usually, a concrete structure like โfld does not contain the empty set, and therefore is a function, see cnfldfun 20956. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข Struct = {โจ๐, ๐ฅโฉ โฃ (๐ฅ โ ( โค โฉ (โ ร โ)) โง Fun (๐ โ {โ }) โง dom ๐ โ (...โ๐ฅ))} | ||
Theorem | brstruct 17081 | The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข Rel Struct | ||
Theorem | isstruct2 17082 | The property of being a structure with components in (1st โ๐)...(2nd โ๐). (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข (๐น Struct ๐ โ (๐ โ ( โค โฉ (โ ร โ)) โง Fun (๐น โ {โ }) โง dom ๐น โ (...โ๐))) | ||
Theorem | structex 17083 | A structure is a set. (Contributed by AV, 10-Nov-2021.) |
โข (๐บ Struct ๐ โ ๐บ โ V) | ||
Theorem | structn0fun 17084 | A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
โข (๐น Struct ๐ โ Fun (๐น โ {โ })) | ||
Theorem | isstruct 17085 | The property of being a structure with components in ๐...๐. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข (๐น Struct โจ๐, ๐โฉ โ ((๐ โ โ โง ๐ โ โ โง ๐ โค ๐) โง Fun (๐น โ {โ }) โง dom ๐น โ (๐...๐))) | ||
Theorem | structcnvcnv 17086 | Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข (๐น Struct ๐ โ โกโก๐น = (๐น โ {โ })) | ||
Theorem | structfung 17087 | The converse of the converse of a structure is a function. Closed form of structfun 17088. (Contributed by AV, 12-Nov-2021.) |
โข (๐น Struct ๐ โ Fun โกโก๐น) | ||
Theorem | structfun 17088 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.) |
โข ๐น Struct ๐ โ โข Fun โกโก๐น | ||
Theorem | structfn 17089 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข ๐น Struct โจ๐, ๐โฉ โ โข (Fun โกโก๐น โง dom ๐น โ (1...๐)) | ||
Theorem | strleun 17090 | Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข ๐น Struct โจ๐ด, ๐ตโฉ & โข ๐บ Struct โจ๐ถ, ๐ทโฉ & โข ๐ต < ๐ถ โ โข (๐น โช ๐บ) Struct โจ๐ด, ๐ทโฉ | ||
Theorem | strle1 17091 | Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข ๐ผ โ โ & โข ๐ด = ๐ผ โ โข {โจ๐ด, ๐โฉ} Struct โจ๐ผ, ๐ผโฉ | ||
Theorem | strle2 17092 | Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข ๐ผ โ โ & โข ๐ด = ๐ผ & โข ๐ผ < ๐ฝ & โข ๐ฝ โ โ & โข ๐ต = ๐ฝ โ โข {โจ๐ด, ๐โฉ, โจ๐ต, ๐โฉ} Struct โจ๐ผ, ๐ฝโฉ | ||
Theorem | strle3 17093 | Make a structure from a triple. (Contributed by Mario Carneiro, 29-Aug-2015.) |
โข ๐ผ โ โ & โข ๐ด = ๐ผ & โข ๐ผ < ๐ฝ & โข ๐ฝ โ โ & โข ๐ต = ๐ฝ & โข ๐ฝ < ๐พ & โข ๐พ โ โ & โข ๐ถ = ๐พ โ โข {โจ๐ด, ๐โฉ, โจ๐ต, ๐โฉ, โจ๐ถ, ๐โฉ} Struct โจ๐ผ, ๐พโฉ | ||
Theorem | sbcie2s 17094* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.) |
โข ๐ด = (๐ธโ๐) & โข ๐ต = (๐นโ๐) & โข ((๐ = ๐ด โง ๐ = ๐ต) โ (๐ โ ๐)) โ โข (๐ค = ๐ โ ([(๐ธโ๐ค) / ๐][(๐นโ๐ค) / ๐]๐ โ ๐)) | ||
Theorem | sbcie3s 17095* | A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 15-Mar-2019.) |
โข ๐ด = (๐ธโ๐) & โข ๐ต = (๐นโ๐) & โข ๐ถ = (๐บโ๐) & โข ((๐ = ๐ด โง ๐ = ๐ต โง ๐ = ๐ถ) โ (๐ โ ๐)) โ โข (๐ค = ๐ โ ([(๐ธโ๐ค) / ๐][(๐นโ๐ค) / ๐][(๐บโ๐ค) / ๐]๐ โ ๐)) | ||
Syntax | csts 17096 | Set components of a structure. |
class sSet | ||
Definition | df-sets 17097* | Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-ress 17174 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. Or df-mgp 19988, which takes a ring and overrides its addition operation with the multiplicative operation, so that we can consider the "multiplicative group" using group and monoid theorems, which expect the operation to be in the +g slot instead of the .r slot. (Contributed by Mario Carneiro, 1-Dec-2014.) |
โข sSet = (๐ โ V, ๐ โ V โฆ ((๐ โพ (V โ dom {๐})) โช {๐})) | ||
Theorem | reldmsets 17098 | The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
โข Rel dom sSet | ||
Theorem | setsvalg 17099 | Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
โข ((๐ โ ๐ โง ๐ด โ ๐) โ (๐ sSet ๐ด) = ((๐ โพ (V โ dom {๐ด})) โช {๐ด})) | ||
Theorem | setsval 17100 | Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
โข ((๐ โ ๐ โง ๐ต โ ๐) โ (๐ sSet โจ๐ด, ๐ตโฉ) = ((๐ โพ (V โ {๐ด})) โช {โจ๐ด, ๐ตโฉ})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |