Home | Metamath
Proof Explorer Theorem List (p. 171 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pleid 17001 | Utility theorem: self-referencing, index-independent form of df-ple 16908. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
⊢ le = Slot (le‘ndx) | ||
Theorem | plendxnn 17002 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ∈ ℕ | ||
Theorem | basendxltplendx 17003 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
⊢ (Base‘ndx) < (le‘ndx) | ||
Theorem | plendxnbasendx 17004 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ≠ (Base‘ndx) | ||
Theorem | plendxnplusgndx 17005 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 31140. (Contributed by AV, 18-Oct-2024.) |
⊢ (le‘ndx) ≠ (+g‘ndx) | ||
Theorem | plendxnmulrndx 17006 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21166. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (.r‘ndx) | ||
Theorem | plendxnscandx 17007 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21170. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
Theorem | plendxnvscandx 17008 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21168. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
Theorem | otpsstr 17009 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
Theorem | otpsbas 17010 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
Theorem | otpstset 17011 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
Theorem | otpsle 17012 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
Theorem | ressle 17013 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | ocndx 17014 | Index value of the df-ocomp 16909 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ (oc‘ndx) = ;11 | ||
Theorem | ocid 17015 | Utility theorem: index-independent form of df-ocomp 16909. (Contributed by Mario Carneiro, 25-Oct-2015.) |
⊢ oc = Slot (oc‘ndx) | ||
Theorem | dsndx 17016 | Index value of the df-ds 16910 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (dist‘ndx) = ;12 | ||
Theorem | dsid 17017 | Utility theorem: index-independent form of df-ds 16910. (Contributed by Mario Carneiro, 23-Dec-2013.) |
⊢ dist = Slot (dist‘ndx) | ||
Theorem | dsndxnn 17018 | The index of the slot for the distance in an extensible structure is a positive integer. Formerly part of proof for tmslem 23543. (Contributed by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ∈ ℕ | ||
Theorem | basendxltdsndx 17019 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. Formerly part of proof for tmslem 23543. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (dist‘ndx) | ||
Theorem | dsndxnbasendx 17020 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
Theorem | dsndxnplusgndx 17021 | The slot for the distance function is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpds 19648. (Contributed by AV, 18-Oct-2024.) |
⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
Theorem | dsndxnmulrndx 17022 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
Theorem | slotsdnscsi 17023 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. Formerly part of sralem 20354 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | dsndxntsetndx 17024 | The slot for the distance function is not the slot for the topology in an extensible structure. Formerly part of proof for tngds 23717. (Contributed by AV, 29-Oct-2024.) |
⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
Theorem | unifndx 17025 | Index value of the df-unif 16911 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ (UnifSet‘ndx) = ;13 | ||
Theorem | unifid 17026 | Utility theorem: index-independent form of df-unif 16911. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
⊢ UnifSet = Slot (UnifSet‘ndx) | ||
Theorem | unifndxnn 17027 | The index of the slot for the uniform set in an extensible structure is a positive integer. Formerly part of proof for tuslem 23326. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ∈ ℕ | ||
Theorem | basendxltunifndx 17028 | The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. Formerly part of proof for tuslem 23326. (Contributed by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
Theorem | unifndxnbasendx 17029 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
Theorem | unifndxntsetndx 17030 | The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem 23326. (Contributed by AV, 28-Oct-2024.) |
⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
Theorem | ressunif 17031 | UnifSet is unaffected by restriction. (Contributed by Thierry Arnoux, 7-Dec-2017.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑈 = (UnifSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑈 = (UnifSet‘𝐻)) | ||
Theorem | odrngstr 17032 | Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑊 Struct 〈1, ;12〉 | ||
Theorem | odrngbas 17033 | The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑊)) | ||
Theorem | odrngplusg 17034 | The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑊)) | ||
Theorem | odrngmulr 17035 | The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑊)) | ||
Theorem | odrngtset 17036 | The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | odrngle 17037 | The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | odrngds 17038 | The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) | ||
Theorem | ressds 17039 | dist is unaffected by restriction. (Contributed by Mario Carneiro, 26-Aug-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐷 = (dist‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐷 = (dist‘𝐻)) | ||
Theorem | homndx 17040 | Index value of the df-hom 16912 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (Hom ‘ndx) = ;14 | ||
Theorem | homid 17041 | Utility theorem: index-independent form of df-hom 16912. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ Hom = Slot (Hom ‘ndx) | ||
Theorem | ccondx 17042 | Index value of the df-cco 16913 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ (comp‘ndx) = ;15 | ||
Theorem | ccoid 17043 | Utility theorem: index-independent form of df-cco 16913. (Contributed by Mario Carneiro, 7-Jan-2017.) |
⊢ comp = Slot (comp‘ndx) | ||
Theorem | slotsbhcdif 17044 | The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
Theorem | slotsbhcdifOLD 17045 | Obsolete proof of slotsbhcdif 17044 as of 28-Oct-2024. The slots Base, Hom and comp are different. (Contributed by AV, 5-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | ||
Theorem | resshom 17046 | Hom is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐻 = (Hom ‘𝐷)) | ||
Theorem | ressco 17047 | comp is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ 𝐷 = (𝐶 ↾s 𝐴) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (comp‘𝐷)) | ||
Syntax | crest 17048 | Extend class notation with the function returning a subspace topology. |
class ↾t | ||
Syntax | ctopn 17049 | Extend class notation with the topology extractor function. |
class TopOpen | ||
Definition | df-rest 17050* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
Definition | df-topn 17051 | Define the topology extractor function. This differs from df-tset 16907 when a structure has been restricted using df-ress 16868; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
Theorem | restfn 17052 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
⊢ ↾t Fn (V × V) | ||
Theorem | topnfn 17053 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ TopOpen Fn V | ||
Theorem | restval 17054* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
Theorem | elrest 17055* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
Theorem | elrestr 17056 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
Theorem | 0rest 17057 | Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (∅ ↾t 𝐴) = ∅ | ||
Theorem | restid2 17058 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
Theorem | restsspw 17059 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
Theorem | firest 17060 | The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (fi‘(𝐽 ↾t 𝐴)) = ((fi‘𝐽) ↾t 𝐴) | ||
Theorem | restid 17061 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
Theorem | topnval 17062 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ↾t 𝐵) = (TopOpen‘𝑊) | ||
Theorem | topnid 17063 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝐽 ⊆ 𝒫 𝐵 → 𝐽 = (TopOpen‘𝑊)) | ||
Theorem | topnpropd 17064 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
Syntax | ctg 17065 | Extend class notation with a function that converts a basis to its corresponding topology. |
class topGen | ||
Syntax | cpt 17066 | Extend class notation with a function whose value is a product topology. |
class ∏t | ||
Syntax | c0g 17067 | Extend class notation with group identity element. |
class 0g | ||
Syntax | cgsu 17068 | Extend class notation to include finitely supported group sums. |
class Σg | ||
Definition | df-0g 17069* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum 17070. The related theorems are provided later, see grpidval 18260. (Contributed by NM, 20-Aug-2011.) |
⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
Definition | df-gsum 17070* |
Define the group sum (also called "iterated sum") for the structure
𝐺 of a finite sequence of elements
whose values are defined by the
expression 𝐵 and whose set of indices is 𝐴. It
may be viewed
as a product (if 𝐺 is a multiplication), a sum (if
𝐺
is an
addition) or any other operation. The variable 𝑘 is normally a free
variable in 𝐵 (i.e., 𝐵 can be thought of as
𝐵(𝑘)). The
definition is meaningful in different contexts, depending on the size of
the index set 𝐴 and each demanding different
properties of 𝐺.
1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. See gsum0 18283. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., (𝐵(1) + 𝐵(2)) + 𝐵(3), etc. See gsumval2 18285 and gsumnunsn 32420. 3. If 𝐴 is a finite set (or is nonzero for finitely many indices) and 𝐺 is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 19423. 4. If 𝐴 is an infinite set and 𝐺 is a Hausdorff topological group, then there is a meaningful sum, but Σg cannot handle this case. See df-tsms 23186. Remark: this definition is required here because the symbol Σg is already used in df-prds 17075 and df-imas 17136. The related theorems are provided later, see gsumvalx 18275. (Contributed by FL, 5-Sep-2010.) (Revised by FL, 17-Oct-2011.) (Revised by Mario Carneiro, 7-Dec-2014.) |
⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) | ||
Definition | df-topgen 17071* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78 (see tgval2 22014). The first use of this definition is tgval 22013 but the token is used in df-pt 17072. See tgval3 22021 for an alternate expression for the value. (Contributed by NM, 16-Jul-2006.) |
⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | ||
Definition | df-pt 17072* | Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | ||
Syntax | cprds 17073 | The function constructing structure products. |
class Xs | ||
Syntax | cpws 17074 | The function constructing structure powers. |
class ↑s | ||
Definition | df-prds 17075* | Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑠〉, 〈( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) | ||
Theorem | reldmprds 17076 | The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ Rel dom Xs | ||
Definition | df-pws 17077* | Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.) |
⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | ||
Theorem | prdsbasex 17078* | Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015.) |
⊢ 𝐵 = X𝑥 ∈ dom 𝑅(Base‘(𝑅‘𝑥)) ⇒ ⊢ 𝐵 ∈ V | ||
Theorem | imasvalstr 17079 | An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) ⇒ ⊢ 𝑈 Struct 〈1, ;12〉 | ||
Theorem | prdsvalstr 17080 | Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉 | ||
Theorem | prdsbaslem 17081 | Lemma for prdsbas 17085 and similar theorems. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 12-Jul-2024.) |
⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) & ⊢ 𝐴 = (𝐸‘𝑈) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ {〈(𝐸‘ndx), 𝑇〉} ⊆ (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) ⇒ ⊢ (𝜑 → 𝐴 = 𝑇) | ||
Theorem | prdsvallem 17082* | Lemma for prdsval 17083. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17083, dependency on df-hom 16912 removed. (Revised by AV, 13-Oct-2024.) |
⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V | ||
Theorem | prdsval 17083* | Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) & ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) & ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) & ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) & ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) & ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) & ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) | ||
Theorem | prdssca 17084 | Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) | ||
Theorem | prdsbas 17085* | Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
Theorem | prdsplusg 17086* | Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ + = (+g‘𝑃) ⇒ ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
Theorem | prdsmulr 17087* | Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ · = (.r‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
Theorem | prdsvsca 17088* | Scalar multiplication in a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
Theorem | prdsip 17089* | Inner product in a structure product. (Contributed by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ , = (·𝑖‘𝑃) ⇒ ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) | ||
Theorem | prdsle 17090* | Structure product weak ordering. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ ≤ = (le‘𝑃) ⇒ ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) | ||
Theorem | prdsless 17091 | Closure of the order relation on a structure product. (Contributed by Mario Carneiro, 16-Aug-2015.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ ≤ = (le‘𝑃) ⇒ ⊢ (𝜑 → ≤ ⊆ (𝐵 × 𝐵)) | ||
Theorem | prdsds 17092* | Structure product distance function. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐷 = (dist‘𝑃) ⇒ ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) | ||
Theorem | prdsdsfn 17093 | Structure product distance function. (Contributed by Mario Carneiro, 15-Sep-2015.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐷 = (dist‘𝑃) ⇒ ⊢ (𝜑 → 𝐷 Fn (𝐵 × 𝐵)) | ||
Theorem | prdstset 17094 | Structure product topology. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝑂 = (TopSet‘𝑃) ⇒ ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) | ||
Theorem | prdshom 17095* | Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐻 = (Hom ‘𝑃) ⇒ ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) | ||
Theorem | prdsco 17096* | Structure product composition operation. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ 𝐻 = (Hom ‘𝑃) & ⊢ ∙ = (comp‘𝑃) ⇒ ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) | ||
Theorem | prdsbas2 17097* | The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
Theorem | prdsbasmpt 17098* | A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ (Base‘(𝑅‘𝑥)))) | ||
Theorem | prdsbasfn 17099 | Points in the structure product are functions; use this with dffn5 6810 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Fn 𝐼) | ||
Theorem | prdsbasprj 17100 | Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |