Home | Metamath
Proof Explorer Theorem List (p. 171 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | basendxnplusgndx 17001 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | basendxnplusgndxOLD 17002 | Obsolete version of basendxnplusgndx 17001 as of 17-Oct-2024. The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | grpstr 17003 | A constructed group is a structure on 1...2. Depending on hard-coded index values. Use grpstrndx 17004 instead. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈1, 2〉 | ||
Theorem | grpstrndx 17004 | A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (+g‘ndx)〉 | ||
Theorem | grpbase 17005 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpbaseOLD 17006 | Obsolete version of grpbase 17005 as of 27-Oct-2024. The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpplusg 17007 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
Theorem | grpplusgOLD 17008 | Obsolete version of grpplusg 17007 as of 27-Oct-2024. The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
Theorem | ressplusg 17009 | +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
Theorem | grpbasex 17010 | The base of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpbase 17005 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
Theorem | grpplusgx 17011 | The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg 17007 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ + = (+g‘𝐺) | ||
Theorem | mulrndx 17012 | Index value of the df-mulr 16985 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (.r‘ndx) = 3 | ||
Theorem | mulrid 17013 | Utility theorem: index-independent form of df-mulr 16985. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ .r = Slot (.r‘ndx) | ||
Theorem | basendxnmulrndx 17014 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | basendxnmulrndxOLD 17015 | Obsolete proof of basendxnmulrndx 17014 as of 28-Oct-2024. The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | plusgndxnmulrndx 17016 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
Theorem | rngstr 17017 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ 𝑅 Struct 〈1, 3〉 | ||
Theorem | rngbase 17018 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑅)) | ||
Theorem | rngplusg 17019 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
Theorem | rngmulr 17020 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) | ||
Theorem | starvndx 17021 | Index value of the df-starv 16986 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (*𝑟‘ndx) = 4 | ||
Theorem | starvid 17022 | Utility theorem: index-independent form of df-starv 16986. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ *𝑟 = Slot (*𝑟‘ndx) | ||
Theorem | starvndxnbasendx 17023 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17027. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (Base‘ndx) | ||
Theorem | starvndxnplusgndx 17024 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17027. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (+g‘ndx) | ||
Theorem | starvndxnmulrndx 17025 | The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv 17027. (Contributed by AV, 18-Oct-2024.) |
⊢ (*𝑟‘ndx) ≠ (.r‘ndx) | ||
Theorem | ressmulr 17026 | .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = (.r‘𝑆)) | ||
Theorem | ressstarv 17027 | *𝑟 is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ ∗ = (*𝑟‘𝑅) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∗ = (*𝑟‘𝑆)) | ||
Theorem | srngstr 17028 | A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ 𝑅 Struct 〈1, 4〉 | ||
Theorem | srngbase 17029 | The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑅)) | ||
Theorem | srngplusg 17030 | The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑅)) | ||
Theorem | srngmulr 17031 | The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = (.r‘𝑅)) | ||
Theorem | srnginvl 17032 | The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ∪ {〈(*𝑟‘ndx), ∗ 〉}) ⇒ ⊢ ( ∗ ∈ 𝑋 → ∗ = (*𝑟‘𝑅)) | ||
Theorem | scandx 17033 | Index value of the df-sca 16987 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (Scalar‘ndx) = 5 | ||
Theorem | scaid 17034 | Utility theorem: index-independent form of scalar df-sca 16987. (Contributed by Mario Carneiro, 19-Jun-2014.) |
⊢ Scalar = Slot (Scalar‘ndx) | ||
Theorem | scandxnbasendx 17035 | The slot for the scalar is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (Base‘ndx) | ||
Theorem | scandxnplusgndx 17036 | The slot for the scalar field is not the slot for the group operation in an extensible structure. Formerly part of proof for mgpsca 19737. (Contributed by AV, 18-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (+g‘ndx) | ||
Theorem | scandxnmulrndx 17037 | The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 19737. (Contributed by AV, 29-Oct-2024.) |
⊢ (Scalar‘ndx) ≠ (.r‘ndx) | ||
Theorem | vscandx 17038 | Index value of the df-vsca 16988 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ ( ·𝑠 ‘ndx) = 6 | ||
Theorem | vscaid 17039 | Utility theorem: index-independent form of scalar product df-vsca 16988. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | ||
Theorem | vscandxnbasendx 17040 | The slot for the scalar product is not the slot for the base set in an extensible structure. Formerly part of proof for rmodislmod 20200. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (Base‘ndx) | ||
Theorem | vscandxnplusgndx 17041 | The slot for the scalar product is not the slot for the group operation in an extensible structure. Formerly part of proof for rmodislmod 20200. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (+g‘ndx) | ||
Theorem | vscandxnmulrndx 17042 | The slot for the scalar product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for rmodislmod 20200. (Contributed by AV, 29-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (.r‘ndx) | ||
Theorem | vscandxnscandx 17043 | The slot for the scalar product is not the slot for the scalar field in an extensible structure. Formerly part of proof for rmodislmod 20200. (Contributed by AV, 18-Oct-2024.) |
⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | ||
Theorem | lmodstr 17044 | A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝑊 Struct 〈1, 6〉 | ||
Theorem | lmodbase 17045 | The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
Theorem | lmodplusg 17046 | The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
Theorem | lmodsca 17047 | The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐹 ∈ 𝑋 → 𝐹 = (Scalar‘𝑊)) | ||
Theorem | lmodvsca 17048 | The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝐹〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝑊)) | ||
Theorem | ipndx 17049 | Index value of the df-ip 16989 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (·𝑖‘ndx) = 8 | ||
Theorem | ipid 17050 | Utility theorem: index-independent form of df-ip 16989. (Contributed by Mario Carneiro, 6-Oct-2013.) |
⊢ ·𝑖 = Slot (·𝑖‘ndx) | ||
Theorem | ipndxnbasendx 17051 | The slot for the inner product is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (Base‘ndx) | ||
Theorem | ipndxnplusgndx 17052 | The slot for the inner product is not the slot for the group operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (+g‘ndx) | ||
Theorem | ipndxnmulrndx 17053 | The slot for the inner product is not the slot for the ring (multiplication) operation in an extensible structure. Formerly part of proof for mgpsca 19737. (Contributed by AV, 29-Oct-2024.) |
⊢ (·𝑖‘ndx) ≠ (.r‘ndx) | ||
Theorem | slotsdifipndx 17054 | The slot for the scalar is not the index of other slots. Formerly part of proof for srasca 20456 and sravsca 20458. (Contributed by AV, 12-Nov-2024.) |
⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | ipsstr 17055 | Lemma to shorten proofs of ipsbase 17056 through ipsvsca 17060. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ 𝐴 Struct 〈1, 8〉 | ||
Theorem | ipsbase 17056 | The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
Theorem | ipsaddg 17057 | The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
Theorem | ipsmulr 17058 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
Theorem | ipssca 17059 | The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
Theorem | ipsvsca 17060 | The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
Theorem | ipsip 17061 | The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), 𝐼〉}) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (·𝑖‘𝐴)) | ||
Theorem | resssca 17062 | Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 = (Scalar‘𝐻)) | ||
Theorem | ressvsca 17063 | ·𝑠 is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ · = ( ·𝑠 ‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | ressip 17064 | The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ , = (·𝑖‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → , = (·𝑖‘𝐻)) | ||
Theorem | phlstr 17065 | A constructed pre-Hilbert space is a structure. Starting from lmodstr 17044 (which has 4 members), we chain strleun 16867 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ 𝐻 Struct 〈1, 8〉 | ||
Theorem | phlbase 17066 | The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝐻)) | ||
Theorem | phlplusg 17067 | The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝐻)) | ||
Theorem | phlsca 17068 | The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ (𝑇 ∈ 𝑋 → 𝑇 = (Scalar‘𝐻)) | ||
Theorem | phlvsca 17069 | The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( · ∈ 𝑋 → · = ( ·𝑠 ‘𝐻)) | ||
Theorem | phlip 17070 | The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝐻 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑇〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ⇒ ⊢ ( , ∈ 𝑋 → , = (·𝑖‘𝐻)) | ||
Theorem | tsetndx 17071 | Index value of the df-tset 16990 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (TopSet‘ndx) = 9 | ||
Theorem | tsetid 17072 | Utility theorem: index-independent form of df-tset 16990. (Contributed by NM, 20-Oct-2012.) |
⊢ TopSet = Slot (TopSet‘ndx) | ||
Theorem | tsetndxnn 17073 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ∈ ℕ | ||
Theorem | basendxlttsetndx 17074 | The index of the slot for the base set is less then the index of the slot for the topology in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (Base‘ndx) < (TopSet‘ndx) | ||
Theorem | tsetndxnbasendx 17075 | The slot for the topology is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (Base‘ndx) | ||
Theorem | tsetndxnplusgndx 17076 | The slot for the topology is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgtset 18967. (Contributed by AV, 18-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (+g‘ndx) | ||
Theorem | tsetndxnmulrndx 17077 | The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
⊢ (TopSet‘ndx) ≠ (.r‘ndx) | ||
Theorem | tsetndxnstarvndx 17078 | The slot for the topology is not the slot for the involution in an extensible structure. Formerly part of proof for cnfldfunALT 20619. (Contributed by AV, 11-Nov-2024.) |
⊢ (TopSet‘ndx) ≠ (*𝑟‘ndx) | ||
Theorem | slotstnscsi 17079 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot TopSet. Formerly part of sralem 20448 and proofs using it. (Contributed by AV, 29-Oct-2024.) |
⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | ||
Theorem | topgrpstr 17080 | A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ 𝑊 Struct 〈1, 9〉 | ||
Theorem | topgrpbas 17081 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐵 ∈ 𝑋 → 𝐵 = (Base‘𝑊)) | ||
Theorem | topgrpplusg 17082 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ ( + ∈ 𝑋 → + = (+g‘𝑊)) | ||
Theorem | topgrptset 17083 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ 𝑋 → 𝐽 = (TopSet‘𝑊)) | ||
Theorem | resstset 17084 | TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐽 = (TopSet‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐽 = (TopSet‘𝐻)) | ||
Theorem | plendx 17085 | Index value of the df-ple 16991 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) |
⊢ (le‘ndx) = ;10 | ||
Theorem | pleid 17086 | Utility theorem: self-referencing, index-independent form of df-ple 16991. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
⊢ le = Slot (le‘ndx) | ||
Theorem | plendxnn 17087 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ∈ ℕ | ||
Theorem | basendxltplendx 17088 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
⊢ (Base‘ndx) < (le‘ndx) | ||
Theorem | plendxnbasendx 17089 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
⊢ (le‘ndx) ≠ (Base‘ndx) | ||
Theorem | plendxnplusgndx 17090 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. Formerly part of proof for oppgle 31247. (Contributed by AV, 18-Oct-2024.) |
⊢ (le‘ndx) ≠ (+g‘ndx) | ||
Theorem | plendxnmulrndx 17091 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. Formerly part of proof for opsrmulr 21265. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (.r‘ndx) | ||
Theorem | plendxnscandx 17092 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. Formerly part of proof for opsrsca 21269. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
Theorem | plendxnvscandx 17093 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. Formerly part of proof for opsrvsca 21267. (Contributed by AV, 1-Nov-2024.) |
⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
Theorem | slotsdifplendx 17094 | The index of the slot for the distance is not the index of other slots. Formerly part of proof for cnfldfunALT 20619. (Contributed by AV, 11-Nov-2024.) |
⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
Theorem | otpsstr 17095 | Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ 𝐾 Struct 〈1, ;10〉 | ||
Theorem | otpsbas 17096 | The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐾)) | ||
Theorem | otpstset 17097 | The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ (𝐽 ∈ 𝑉 → 𝐽 = (TopSet‘𝐾)) | ||
Theorem | otpsle 17098 | The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐵〉, 〈(TopSet‘ndx), 𝐽〉, 〈(le‘ndx), ≤ 〉} ⇒ ⊢ ( ≤ ∈ 𝑉 → ≤ = (le‘𝐾)) | ||
Theorem | ressle 17099 | le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.) |
⊢ 𝑊 = (𝐾 ↾s 𝐴) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐴 ∈ 𝑉 → ≤ = (le‘𝑊)) | ||
Theorem | ocndx 17100 | Index value of the df-ocomp 16992 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
⊢ (oc‘ndx) = ;11 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |