Home | Metamath
Proof Explorer Theorem List (p. 171 of 469) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29509) |
Hilbert Space Explorer
(29510-31032) |
Users' Mathboxes
(31033-46861) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cbs 17001 | Extend class notation with the class of all base set extractors. |
class Base | ||
Definition | df-base 17002 | Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form baseid 17004 instead. (New usage is discouraged.) |
⊢ Base = Slot 1 | ||
Theorem | baseval 17003 | Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
⊢ 𝐾 ∈ V ⇒ ⊢ (Base‘𝐾) = (𝐾‘1) | ||
Theorem | baseid 17004 | Utility theorem: index-independent form of df-base 17002. (Contributed by NM, 20-Oct-2012.) |
⊢ Base = Slot (Base‘ndx) | ||
Theorem | basfn 17005 | The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
⊢ Base Fn V | ||
Theorem | base0 17006 | The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ ∅ = (Base‘∅) | ||
Theorem | elbasfv 17007 | Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
⊢ 𝑆 = (𝐹‘𝑍) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑍 ∈ V) | ||
Theorem | elbasov 17008 | Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ Rel dom 𝑂 & ⊢ 𝑆 = (𝑋𝑂𝑌) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | ||
Theorem | strov2rcl 17009 | Partial reverse closure for any structure defined as a two-argument function. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 2-Dec-2019.) |
⊢ 𝑆 = (𝐼𝐹𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ Rel dom 𝐹 ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
Theorem | basendx 17010 | Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.) |
⊢ (Base‘ndx) = 1 | ||
Theorem | basendxnn 17011 | The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ (Base‘ndx) ∈ ℕ | ||
Theorem | basendxnnOLD 17012 | Obsolete proof of basendxnn 17011 as of 13-Oct-2024. (Contributed by AV, 23-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ∈ ℕ | ||
Theorem | basndxelwund 17013 | The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun 17021. (Contributed by AV, 27-Mar-2020.) (Revised by AV, 17-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | ||
Theorem | basprssdmsets 17014 | The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) | ||
Theorem | opelstrbas 17015 | The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.) |
⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝑉 ∈ 𝑌) & ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) | ||
Theorem | 1strstr 17016 | A constructed one-slot structure. Depending on hard-coded index. Use 1strstr1 17017 instead. (Contributed by AV, 27-Mar-2020.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ 𝐺 Struct 〈1, 1〉 | ||
Theorem | 1strstr1 17017 | A constructed one-slot structure. (Contributed by AV, 15-Nov-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (Base‘ndx)〉 | ||
Theorem | 1strbas 17018 | The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 15-Nov-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | 1strbasOLD 17019 | Obsolete proof of 1strbas 17018 as of 15-Nov-2024. The base set of a constructed one-slot structure. (Contributed by AV, 27-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | 1strwunbndx 17020 | A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
Theorem | 1strwun 17021 | A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
Theorem | 1strwunOLD 17022 | Obsolete version of 1strwun 17021 as of 17-Oct-2024. A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) | ||
Theorem | 2strstr 17023 | A constructed two-slot structure. Depending on hard-coded indices. Use 2strstr1 17026 instead. (Contributed by Mario Carneiro, 29-Aug-2015.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐺 Struct 〈1, 𝑁〉 | ||
Theorem | 2strbas 17024 | The base set of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) Use the index-independent version 2strbas1 17028 instead. (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | 2strop 17025 | The other slot of a constructed two-slot structure. (Contributed by Mario Carneiro, 29-Aug-2015.) Use the index-independent version 2strop1 17029 instead. (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(𝐸‘ndx), + 〉} & ⊢ 𝐸 = Slot 𝑁 & ⊢ 1 < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ ( + ∈ 𝑉 → + = (𝐸‘𝐺)) | ||
Theorem | 2strstr1 17026 | A constructed two-slot structure. Version of 2strstr 17023 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑁〉 | ||
Theorem | 2strstr1OLD 17027 | Obsolete version of 2strstr1 17026 as of 27-Oct-2024. A constructed two-slot structure. Version of 2strstr 17023 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), 𝑁〉 | ||
Theorem | 2strbas1 17028 | The base set of a constructed two-slot structure. Version of 2strbas 17024 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | 2strop1 17029 | The other slot of a constructed two-slot structure. Version of 2strop 17025 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈𝑁, + 〉} & ⊢ (Base‘ndx) < 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝐸 = Slot 𝑁 ⇒ ⊢ ( + ∈ 𝑉 → + = (𝐸‘𝐺)) | ||
Syntax | cress 17030 | Extend class notation with the extensible structure builder restriction operator. |
class ↾s | ||
Definition | df-ress 17031* |
Define a multifunction restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range
(like Ring), defining a function using the base
set and applying
that (like TopGrp), or explicitly truncating the
slot before use
(like MetSp).
(Credit for this operator goes to Mario Carneiro.) See ressbas 17036 for the altered base set, and resseqnbas 17040 (subrg0 20128, ressplusg 17089, subrg1 20131, ressmulr 17106) for the (un)altered other operations. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) | ||
Theorem | reldmress 17032 | The structure restriction is a proper operator, so it can be used with ovprc1 7368. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ Rel dom ↾s | ||
Theorem | ressval 17033 | Value of structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) | ||
Theorem | ressid2 17034 | General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) | ||
Theorem | ressval2 17035 | Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) | ||
Theorem | ressbas 17036 | Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
Theorem | ressbasOLD 17037 | Obsolete proof of ressbas 17036 as of 7-Nov-2024. Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
Theorem | ressbas2 17038 | Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) | ||
Theorem | ressbasss 17039 | The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (Base‘𝑅) ⊆ 𝐵 | ||
Theorem | resseqnbas 17040 | The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (Base‘ndx) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
Theorem | resslemOLD 17041 | Obsolete version of resseqnbas 17040 as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 1 < 𝑁 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐶 = (𝐸‘𝑅)) | ||
Theorem | ress0 17042 | All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ (∅ ↾s 𝐴) = ∅ | ||
Theorem | ressid 17043 | Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s 𝐵) = 𝑊) | ||
Theorem | ressinbas 17044 | Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
Theorem | ressval3d 17045 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
Theorem | ressval3dOLD 17046 | Obsolete version of ressval3d 17045 as of 17-Oct-2024. Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by AV, 3-Jul-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
Theorem | ressress 17047 | Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
Theorem | ressabs 17048 | Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) | ||
Theorem | wunress 17049 | Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
Theorem | wunressOLD 17050 | Obsolete proof of wunress 17049 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) | ||
Syntax | cplusg 17051 | Extend class notation with group (addition) operation. |
class +g | ||
Syntax | cmulr 17052 | Extend class notation with ring multiplication. |
class .r | ||
Syntax | cstv 17053 | Extend class notation with involution. |
class *𝑟 | ||
Syntax | csca 17054 | Extend class notation with scalar field. |
class Scalar | ||
Syntax | cvsca 17055 | Extend class notation with scalar product. |
class ·𝑠 | ||
Syntax | cip 17056 | Extend class notation with Hermitian form (inner product). |
class ·𝑖 | ||
Syntax | cts 17057 | Extend class notation with the topology component of a topological space. |
class TopSet | ||
Syntax | cple 17058 | Extend class notation with "less than or equal to" for posets. |
class le | ||
Syntax | coc 17059 | Extend class notation with the class of orthocomplementation extractors. |
class oc | ||
Syntax | cds 17060 | Extend class notation with the metric space distance function. |
class dist | ||
Syntax | cunif 17061 | Extend class notation with the uniform structure. |
class UnifSet | ||
Syntax | chom 17062 | Extend class notation with the hom-set structure. |
class Hom | ||
Syntax | cco 17063 | Extend class notation with the composition operation. |
class comp | ||
Definition | df-plusg 17064 | Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form plusgid 17078 instead. (New usage is discouraged.) |
⊢ +g = Slot 2 | ||
Definition | df-mulr 17065 | Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form mulrid 17093 instead. (New usage is discouraged.) |
⊢ .r = Slot 3 | ||
Definition | df-starv 17066 | Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form starvid 17102 instead. (New usage is discouraged.) |
⊢ *𝑟 = Slot 4 | ||
Definition | df-sca 17067 | Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form scaid 17114 instead. (New usage is discouraged.) |
⊢ Scalar = Slot 5 | ||
Definition | df-vsca 17068 | Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form vscaid 17119 instead. (New usage is discouraged.) |
⊢ ·𝑠 = Slot 6 | ||
Definition | df-ip 17069 | Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ipid 17130 instead. (New usage is discouraged.) |
⊢ ·𝑖 = Slot 8 | ||
Definition | df-tset 17070 | Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form tsetid 17152 instead. (New usage is discouraged.) |
⊢ TopSet = Slot 9 | ||
Definition | df-ple 17071 | Define "less than or equal to" ordering extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) Use its index-independent form pleid 17166 instead. (New usage is discouraged.) |
⊢ le = Slot ;10 | ||
Definition | df-ocomp 17072 | Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form ocid 17181 instead. (New usage is discouraged.) |
⊢ oc = Slot ;11 | ||
Definition | df-ds 17073 | Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) Use its index-independent form dsid 17185 instead. (New usage is discouraged.) |
⊢ dist = Slot ;12 | ||
Definition | df-unif 17074 | Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) Use its index-independent form unifid 17195 instead. (New usage is discouraged.) |
⊢ UnifSet = Slot ;13 | ||
Definition | df-hom 17075 | Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form homid 17211 instead. (New usage is discouraged.) |
⊢ Hom = Slot ;14 | ||
Definition | df-cco 17076 | Define the composition operation of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) Use its index-independent form ccoid 17213 instead. (New usage is discouraged.) |
⊢ comp = Slot ;15 | ||
Theorem | plusgndx 17077 | Index value of the df-plusg 17064 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (+g‘ndx) = 2 | ||
Theorem | plusgid 17078 | Utility theorem: index-independent form of df-plusg 17064. (Contributed by NM, 20-Oct-2012.) |
⊢ +g = Slot (+g‘ndx) | ||
Theorem | plusgndxnn 17079 | The index of the slot for the group operation in an extensible structure is a positive integer. (Contributed by AV, 17-Oct-2024.) |
⊢ (+g‘ndx) ∈ ℕ | ||
Theorem | basendxltplusgndx 17080 | The index of the slot for the base set is less then the index of the slot for the group operation in an extensible structure. (Contributed by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) < (+g‘ndx) | ||
Theorem | basendxnplusgndx 17081 | The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 17-Oct-2024.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | basendxnplusgndxOLD 17082 | Obsolete version of basendxnplusgndx 17081 as of 17-Oct-2024. The slot for the base set is not the slot for the group operation in an extensible structure. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ≠ (+g‘ndx) | ||
Theorem | grpstr 17083 | A constructed group is a structure on 1...2. Depending on hard-coded index values. Use grpstrndx 17084 instead. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈1, 2〉 | ||
Theorem | grpstrndx 17084 | A constructed group is a structure. Version not depending on the implementation of the indices. (Contributed by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ 𝐺 Struct 〈(Base‘ndx), (+g‘ndx)〉 | ||
Theorem | grpbase 17085 | The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpbaseOLD 17086 | Obsolete version of grpbase 17085 as of 27-Oct-2024. The base set of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐺)) | ||
Theorem | grpplusg 17087 | The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by AV, 27-Oct-2024.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
Theorem | grpplusgOLD 17088 | Obsolete version of grpplusg 17087 as of 27-Oct-2024. The operation of a constructed group. (Contributed by Mario Carneiro, 2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐺)) | ||
Theorem | ressplusg 17089 | +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → + = (+g‘𝐻)) | ||
Theorem | grpbasex 17090 | The base of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpbase 17085 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ 𝐵 = (Base‘𝐺) | ||
Theorem | grpplusgx 17091 | The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg 17087 instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012.) |
⊢ 𝐵 ∈ V & ⊢ + ∈ V & ⊢ 𝐺 = {〈1, 𝐵〉, 〈2, + 〉} ⇒ ⊢ + = (+g‘𝐺) | ||
Theorem | mulrndx 17092 | Index value of the df-mulr 17065 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
⊢ (.r‘ndx) = 3 | ||
Theorem | mulrid 17093 | Utility theorem: index-independent form of df-mulr 17065. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ .r = Slot (.r‘ndx) | ||
Theorem | basendxnmulrndx 17094 | The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | basendxnmulrndxOLD 17095 | Obsolete proof of basendxnmulrndx 17094 as of 28-Oct-2024. The slot for the base set is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Base‘ndx) ≠ (.r‘ndx) | ||
Theorem | plusgndxnmulrndx 17096 | The slot for the group (addition) operation is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 16-Feb-2020.) |
⊢ (+g‘ndx) ≠ (.r‘ndx) | ||
Theorem | rngstr 17097 | A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ 𝑅 Struct 〈1, 3〉 | ||
Theorem | rngbase 17098 | The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝑅)) | ||
Theorem | rngplusg 17099 | The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝑅)) | ||
Theorem | rngmulr 17100 | The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), · 〉} ⇒ ⊢ ( · ∈ 𝑉 → · = (.r‘𝑅)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |